Multifunctional Polycrystalline Ferroelectric Materials

Processing and Properties
Springer Series in
MATERIALS SCIENCE

The Springer Series in Materials Science covers the complete spectrum of materials physics, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling the structure and properties of all important classes of materials.

For other titles published in this series, go to
www.springer.com/series/856
Multifunctional Polycrystalline Ferroelectric Materials

Processing and Properties
Preface

Most of the recent efforts to produce books on ferroelectric materials have focused on issues such as the integration of ferroelectrics into different types of devices (Ferroelectric and Dynamic Random Access Memories; Piezoelectric Devices), mostly in thin film form, with intrusions into the realm of nanoscale phenomena. Although some attempts have been made to cover more fundamental topics, such as mechanical fatigue or phase transitions, which are essential to understand the performance of polycrystalline ferroelectrics in applications, an overview of the recent advances in processing and properties of both ferroelectric bulk ceramics and thin films is still lacking, despite its direct impact on the improvement or development of new applications. We think that this book can fill such gap. Here the reader will find in one book updated information on the preparation and properties of this technologically relevant range of materials – information that is currently scattered throughout a number of publications.

Basic concepts of polycrystalline ferroelectrics processing and properties are found, together with references to their multiple applications, in the introductory sections of the chapters. On the other hand, research topics that arose in the recent past and are nowadays the focus of intense activity are also addressed in this book. Such is the case for the environmentally friendly polycrystalline ferro-piezoelectric materials, seen from the point of view of elimination of hazardous components, such as the commonly used lead oxide, or the development of clean processing routes for lead-based ferroelectrics. The challenges in the processing and characterization of crystallographically oriented bulk ferroelectric ceramics and nanosized ferroelectrics are also analysed here. All chapters were written by leading authorities on the topics with reference to the basics and to recent advances.

C. Galassi (ISTEC, Faenza, Italy) has written Advances in Processing of Bulk Ferroelectric Materials, using both classical and non-conventional techniques. M. Kosec, D. Kuscer and J. Holc (Institute Jožef Stefan, Ljubljana, Slovenia) have written Processing of Ferroelectric Ceramic Thick Films, a topic at the first stage of the integration of ferroelectrics with other hybrid and microelectronic technolo-
gies. Following the integration steps that require even higher reduction of the dimensions of the ferroelectric material, some chapters are devoted to thin-film issues and nano-sized ferroelectrics. K. Kato (National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Japan) has written *Tailored Liquid Alkoxides for the Chemical Solution Processing of Pb-free Ferroelectric Thin Films*. M. L. Calzada (ICMM-CSIC, Madrid, Spain) has written *Ferroelectrics onto Substrates Prepared by Chemical Solution Deposition: From the Thin Film to the Self-Assembled Nano-sized Structures* and I. Bretos and M. L. Calzada (ICMM-CSIC, Madrid, Spain) have written *Approaches Towards the Minimization of Toxicity in Chemical Solution Deposition Processes of Lead-Based Ferroelectric Thin Films*.

Ferroelectricity and crystal structure are closely related, and the detailed analysis of this requires the use of singular and advanced techniques. L. E. Fuentes-Cobas (Centro de Investigación de Materiales Avanzados, Chihuahua, México) has written about *Synchrotron Radiation Diffraction and Scattering in Ferroelectrics*; M. E. Montero Cabrera (Centro de Investigación de Materiales Avanzados, Chihuahua, Mexico) – *X-Ray Absorption Fine Structure Applied to Ferroelectrics*; D. Chateigner (CRISMAT-ENSICAEN, Caen, France) and J. Ricote (ICMM-CSIC, Madrid, Spain) – *Quantitative Texture Analysis of Polycrystalline Ferroelectrics*; and V. V. Svartsman (Duisburg-Essen University, Duisburg, Germany); and A. L. Kholkin (Aveiro University, Aveiro, Portugal) – *Nanoscale Investigation of Polycrystalline Ferroelectric Materials Via Piezoresponse Force Microscopy*.

Frequently ferro-piezoelectric ceramic materials in devices are subjected to high mechanical loads and must present a high resistance to fatigue under electromechanical vibrations. D. Lupascu, J. Schröder (University of Duisburg-Essen, Essen, Germany), C. Lynch (UCLA, Los Angeles, USA), W. Kreher (University of Dresden, Dresden, Germany) and I. Westram (Darmstadt University of Technology, Darmstadt, Germany) have written about *Mechanical Properties of Ferro-Piezoceramics*. C. Chima-Okeke, W. L. Roberts, A. J. Bushby and M. J. Reece (Queen Mary College, University of London, UK) have written about *The Elastic Properties of Ferroelectric Thin Films Using Nanoindentation*.

A glimpse of the multifunctionality of ferro-piezoelectric ceramics, also mentioned in other chapters, is provided by R. Jiménez and B. Jiménez (ICMM-CSIC, Madrid, Spain), writing on *Pyroelectricity in Polycrystalline Ferroelectrics*. Special attention was given to issues related to the piezoelectric properties of polycrystalline ferroelectrics which are far from being fully explored, and nowadays face important challenges. L. Pardo (ICMM-CSIC, Madrid, Spain) and K. Brebøl (Limiel ApS, Langebæk, Denmark) cover *Properties of Ferro-Piezoelectric Ceramic Materials in the Linear Range: Determination from Impedance Measurements at Resonance* and J. Erhart (Technical University of Liberec, Liberec, Czech Republic) describes *Domain Engineered Piezoelectric Resonators*. A. Albareda and R. Pérez (Politechnic University of Catalonia, Barcelona, Spain) have written about *Non-linear Behaviour of Piezoelectric Ceramics*. Finally, also as a glimpse into the many possible applications of polycrystalline ferroelectrics, in particular in the field of ultrasonic transducers,
Y. Gómez-Ullate Ricón and F. Montero de Espinosa Freijo (Acoustics Institute, CSIC, Madrid, Spain) have written *Piezoelectric Transducers for Structural Health Monitoring: Modelling and Imaging*.

This book offers interesting content for the beginner from academia or industry who is curious about the possibilities of polycrystalline ferroelectric materials; they will find here a wide range of information. But, also, researchers involved in the study of ferroelectric materials or end-users of ferro-piezoelectric ceramics will find some recent developments in the field and some topics that are not commonly discussed in books devoted to ferroelectrics.

L. Pardo
J. Ricote
1 Advances in Processing of Bulk Ferroelectric Materials 1
 Carmen Galassi
 1.1 Introduction .. 1
 1.2 Ferroelectric Materials ... 1
 1.2.1 Perovskite Type Materials .. 3
 1.2.2 Aurivillius Ceramics ... 8
 1.2.3 Tungsten Bronze Ceramics .. 8
 1.2.4 Pyrochlore ... 9
 1.2.5 Multiferroics ... 9
 1.3 Powder Synthesis ... 10
 1.3.1 Solid State Reaction (SSR) .. 10
 1.3.2 Mechanochemical Synthesis ... 14
 1.3.3 Chemical Methods ... 15
 1.4 Colloidal Processing ... 22
 1.4.1 Slurry Formulation ... 22
 1.4.2 Suspension-Based Shaping Techniques 24
 1.5 Templated Grain Growth .. 27
 1.6 Conclusions .. 29
 References .. 30

2 Processing of Ferroelectric Ceramic Thick Films 39
 Marija Kosec, Danjela Kuscer, Janez Holc
 2.1 Introduction .. 39
 2.2 Processing of Thick Films .. 42
 2.2.1 Processing of the Powder ... 42
 2.2.2 Shaping Methods .. 44
 2.2.3 Densification of Thick Films .. 48
 2.3 Processing of Ferroelectric Thick Films on Various Substrates 52
 2.4 Summary .. 55
 2.5 Acknowledgment ... 55
 References .. 55
3 Tailored Liquid Alkoxides for the Chemical Solution Processing of Pb-Free Ferroelectric Thin Films .. 63
Kazumi Kato
3.1 Tailored Alkoxides... 63
3.2 Sr[BiTa(OR)₉]₂ and Sr[BiNb(OR)₉]₂ for SrBi₂Ta₂O₉ and SrBi₂Nb₂O₉... 63
3.2.1 Chemistry in Solutions of Sr-Bi-Ta and Sr-Bi-Nb Complex Alkoxides ... 63
3.2.2 SrBi₂Ta₂O₉ and SrBi₂Nb₂O₉ Thin Films .. 66
3.3 CaBi₄Ti₄(OCH₂CH₂OCH₃)₃₀ for CaBi₄Ti₄O₁₅.................................... 67
3.3.1 Chemistry in Solution of Ca-Bi-Ti Complex Alkoxide67
3.3.2 CaBi₄Ti₄O₁₅ Thin Films Integrated on Pt-Coated Si for FeRAM Application .. 69
3.3.3 CaBi₄Ti₄O₁₅ films integrated on both sides of Pt foils for piezoelectric application... 75
3.3.4 Brief Summary and Future Development 80
3.4 BaTi(OR)₆ for BaTiO₃.. 81
3.4.1 Chemistry in Solutions of Ba-Ti Double Alkoxides 81
3.4.2 BaTiO₃ Films Deposited on LaNiO₃ Seeding Layers on Si .. 81
3.4.3 Brief Summary and Future Development 90
References... 90

4 Ferroelectrics onto Substrates Prepared by Chemical Solution Deposition: From the Thin Film to the Self-Assembled Nano-sized Structures... 93
M. L. Calzada
4.1 Introduction... 93
4.2 Chemical Solution Deposition (CSD) of Ferroelectric Materials..... 97
4.3 Tailoring the Chemistry of the Precursor Solutions 99
4.3.1 Control of the Hydrolysis of the Solutions 100
4.3.2 Solution Homogeneity and its Effect on the Properties of the Films ... 104
4.3.3 Effect of the Chemical Reagents Used for the Preparation of the Precursor Solutions... 106
4.3.4 Stoichiometry of the Precursor Solution.............................. 108
4.3.5 Photo-Activation of the Precursor Solutions 111
4.3.6 Adding Special Compounds to the Precursor Solutions 114
4.4 Tailoring the Conversion of the Solution Deposited Layer into a Ferroelectric Crystalline Thin Film.......................... 114
4.4.1 Effect of the Substrate during the Heat Treatment 115
4.4.2 Firing Atmosphere ... 119
4.4.3 Conventional Heating versus Rapid Heating 119
4.4.4 Two Step Heating versus Single Step Heating 122
4.4.5 UV-Assisted Rapid Thermal Processing............................... 123
4.5 Scaling down the Ferroelectric Thin Film .. 125
 4.5.1 Ultra-Thin Films .. 125
 4.5.2 Self-Assembled Isolated Nanostructures 130
4.6 Final Remark ... 135
Acknowledgments .. 135
References ... 136

5 Approaches Towards the Minimisation of Toxicity in Chemical Solution Deposition Processes of Lead-Based Ferroelectric Thin Films ... 145
Inigo Bretos, M. Lourdes Calzada
Abstract ... 145
5.1 Introduction .. 146
5.2 Photochemical Solution Deposition as a Reliable Method to Avoid Lead Volatilisation during Low-Temperature Processing of Ferroelectric Thin Films .. 149
 5.2.1 The UV Sol-Gel Photoannealing Technique 149
 5.2.2 Photosensitivity of Precursor Solutions 152
 5.2.3 The UV-Assisted Rapid Thermal Processor: Enabling Photo-Excitation and Ozonolysis on the Films 156
 5.2.4 Particular Features of the Low-Temperature Processed Films by UV Sol-Gel Photoannealing .. 157
 5.2.5 Nominally Stoichiometric Solution-Derived Lead-Based Ferroelectric Films: Avoiding the PbO-Excess Addition at Last .. 172
 5.2.6 Remarks ... 180
5.3 Soft Solution Chemistry of Ferroelectric Thin Films 182
 5.3.1 Chemical Solution Deposition Methods 182
 5.3.2 The Aqueous Solution Route... 186
 5.3.3 The Diol-Based Sol-Gel Route ... 192
 5.3.4 Remarks ... 204
5.4 Summary ... 206
Acknowledgments .. 207
References ... 207

6 Synchrotron Radiation Diffraction and Scattering in Ferroelectrics ... 217
Luis E. Fuentes-Cobas
6.1 Synchrotron Radiation ... 217
6.2 X-Ray Diffraction and Scattering: Fundamentals 223
 6.2.1 Bragg Law, Reciprocal Lattice and Ewald Representation 223
 6.2.2 Diffraction Peaks .. 227
 6.2.3 Diffuse Scattering ... 232
6.3 Powder Diffractometry: Techniques and Applications 240
6.3.1 Diffraction by a Polycrystalline Sample in a Synchrotron Facility. Resolving Power 240
6.3.2 The Rietveld Method: Basic Ideas, Formulae and Software ... 242
6.3.3 Ferroelectric Applications .. 251
6.3.4 Phase and Texture Identification in Thin Films 257
6.4 Diffuse Scattering: Techniques and Applications 261
6.4.1 Pair Distribution Function .. 261
6.4.2 Reciprocal Space Maps ... 262
6.4.3 Diffuse Scattering in the Vicinity of Bragg Peaks 264
6.4.4 Crystal Truncation Rods ... 270
6.4.5 Diffuse Scattering Sheets .. 272
6.5 Closing Comments ... 276
Acknowledgments .. 277
References ... 277

7 X-Ray Absorption Fine Structure Applied to Ferroelectrics 281
Maria Elena Montero Cabrera

Abstract .. 281
7.1 Introduction: X-Ray Absorption Fine Structure 282
7.2 X-Rays Absorption in Materials ... 283
7.2.1 X-Rays Absorption .. 283
7.2.2 X-Rays Absorption Edges ... 285
7.3 Basic Ideas on XAFS .. 288
7.3.1 The EXAFS Function ... 288
7.4 X-Ray Absorption near Edge Structure – XANES 291
7.4.1 The XANES Zone: Photoelectron Multiple Scattering and Allowed Transitions ... 291
7.4.2 Edge Energy Position ... 294
7.4.3 Pre-Edge Transitions ... 296
7.4.4 White-Lines .. 300
7.5 Formal Characterization of XAFS ... 301
7.5.1 The EXAFS Equation .. 301
7.5.2 One-Electron Golden Rule Approximation 303
7.5.3 Fluctuations in Interatomic Distances and the Debye-Waller Factor ... 305
7.5.4 Curved Waves and Multiple Scattering of Photoelectrons ... 307
7.5.5 Inelastic Scattering ... 309
7.6 Experimental Methods in XAFS ... 312
7.6.1 Measurement Modes: Transmission, Fluorescence and Total Electron Yield ... 312
7.7 Data Reduction ... 317
7.7.1 Steps for Obtaining XAFS Experimental Function 317
7.8 XAFS Data Analysis ... 321
7.8.1 Empirical Methods of Data Analysis 321
7.8.2 Theoretical Models for Data Analysis 324
7.9 XAFS Applied to Ferroelectrics 329
7.9.1 Pioneering Works on Order-Disorder or Displacive
Character of Ferroelectric Materials 329
7.9.2 Applying XANES Fingerprints for Identification and
EXAFS for Structures .. 332
7.9.3 XAFS for Studying Relaxor Behaviour of
Ferroelectrics ... 334
7.9.4 XAFS for Studying Aurivillius Phases 336
7.9.5 Concluding Remarks: Comparing Information from
XAFS and X-Ray Diffraction and Scattering 339
Acknowledgments .. 340
References .. 341

8 Quantitative Texture Analysis of Polycrystalline Ferroelectrics 347
D. Chateigner, J. Ricote
8.1 Introduction ... 347
8.2 Conventional Texture Analysis 348
8.2.1 Qualitative Determination of Texture from
Conventional Diffraction Diagrams 349
8.2.2 A Quantitative Approach: The Lotgering Factor 355
8.2.3 Approaches to Texture Characterization Based on
Rietveld Analysis .. 356
8.2.4 Representations of Textures: Pole Figures 359
8.3 Quantitative Texture Analysis 371
8.3.1 Calculation of the Orientation Distribution Function 371
8.3.2 OD Texture Strength Factors 376
8.3.3 Estimation of the Elastic Properties of Polycrystals
Using the Orientation Distributions 378
8.4 Combined Analysis .. 381
8.4.1 Experimental Requirements for a Combined Analysis
of Diffraction Data .. 383
8.4.2 Example of the Application of the Combined Analysis
to the Study of a Ferroelectric Thin Film 384
8.5 Texture of Polycrystalline Ferroelectric Films 388
8.5.1 Substrate Induced Texture Variations 388
8.5.2 Influence of the Processing Parameters on the
Development of Texture in Thin Films 402
Final Remarks ... 403
Acknowledgements ... 404
References .. 404
9 Nanoscale Investigation of Polycrystalline Ferroelectric Materials via Piezoresponse Force Microscopy ... 409
V. V. Shvartsman, A. L. Kholkin

9.1 Introduction .. 409
9.2 Principle of Piezoresponse Force Microscopy 412
 9.2.1 Experimental Setup .. 412
 9.2.2 Electromechanical Contribution ... 413
 9.2.3 Electrostatic Contribution .. 416
 9.2.4 Resolution in PFM Experiments ... 417
9.3 PFM in Polycrystalline Materials. Effect of Microstructure, Texture, Composition .. 420
9.4 Local Polarization Switching by PFM ... 424
 9.4.1 Thermodynamics of PFM Tip-Induced Polarization Reversal .. 425
 9.4.2 Domain Dynamics Studied by PFM .. 428
 9.4.3 Local Piezoelectric Hysteresis Loops 432
 9.4.4 Anomalous Polarization Switching .. 438
 9.4.5 Polarization Retention Loss (Aging) in PFM Experiments 442
9.5 Polarization Switching by a Mechanical Stress 444
9.6 Investigation of Polarization Fatigue by PFM 447
9.7 Investigation of Relaxor Ferroelectrics by PFM 450
9.8 Size Effect and Search for the Ferroelectricity Limit 456
Conclusions ... 458
References .. 458

10 Mechanical Properties of Ferro-Piezoceramics 469
Doru C. Lupascu, Jörg Schröder, Christopher S. Lynch, Wolfgang Kreher, Ilona Westram

10.1 Introduction .. 469
10.2 Electromechanical Hysteresis, Experiment 470
 10.2.1 Introduction to Hysteresis .. 470
 10.2.2 Electromechanical Coupling in Single Crystals 472
 10.2.3 Time Effects .. 478
 10.2.4 Electromechanical Coupling in Polycrystalline Materials 481
10.3 Electromechanical Hysteresis, Modelling 489
 10.3.1 Models of Hysteresis .. 489
 10.3.2 Homogenization ... 497
10.4 Mechanical Failure ... 515
 10.4.1 Crack Origins in Devices .. 515
 10.4.2 Crack Propagation (Experiment) .. 516
 10.4.3 Models for Cracking in Ferroelectrics 528
10.5 Summary ... 531