Science of Synthesis

Hetarenes and Related Ring Systems

Six-Membered Hetarenes with One Nitrogen or Phosphorus Atom

Volume Editor
D. StC. Black

Editorial Board
D. Bellus
E. N. Jacobsen
S. V. Ley
R. Noyori
M. Regitz
P. J. Rei
er
E. Schaumann
I. Shinkai
E. J. Thomas
B. M. Trost
Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:
- Methods critically evaluated by leading scientists
- Background information and detailed experimental procedures
- Schemes and tables which illustrate the reaction scope
Category 2
Volume 15

Hetarenes and Related Ring Systems
Six-Membered Hetarenes with One Nitrogen or Phosphorus Atom

Volume Editor D. StC. Black
Responsible Member of the Editorial Board M. Regitz

Authors

M. Álvarez R. D. Larsen
U. Bergsträßer P. Le Floch
D. StC. Black F. Mathey
D. Cai P.-W. Phuan
H. Ihmels R. H. Prager
J. A. Joule D. Spitzner
P. A. Keller R. Streubel
M. C. Kozlowski C. M. Williams

2005
Georg Thieme Verlag
Stuttgart · New York
Preface

As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work Houben–Weyl Methods of Organic Chemistry will be published starting in the year 2000.

To reflect the new broader need and focus, this new edition has a new title, Science of Synthesis, Houben–Weyl Methods of Molecular Transformations. Science of Synthesis will benefit from more than 90 years of experience and will continue the tradition of excellence in publishing synthetic chemistry reference works. Science of Synthesis will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of Science of Synthesis will provide chemists with the most reliable methods to solve their synthesis problems. Science of Synthesis will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make Science of Synthesis the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

The Editorial Board

D. Bellus (Basel, Switzerland) P. J. Reider (New Jersey, USA)
E. N. Jacobsen (Cambridge, USA) E. Schaumann (Clausthal-Zellerfeld, Germany)
S. V. Ley (Cambridge, UK) I. Shinkai (Tsukuba, Japan)
R. Noyori (Nagoya, Japan) E. J. Thomas (Manchester, UK)
M. Regitz (Kaiserslautern, Germany) B. M. Trost (Stanford, USA)

October 2000
This is the seventh volume in the series of nine covering the synthetic chemistry of Hetar-
ены and Related Ring Systems, which make up Category 2 of Science of Synthesis. The
nine volumes are arranged with a progression of structures ranging from smaller to larg-
er ring sizes, and incorporate within their framework increasing numbers and diversity
of heteroatoms. Volume 15 describes the methods for synthesis of six-membered hetar-
enes with one nitrogen or phosphorus atom. It follows the volume dealing with six-mem-
bered hetarenes with one chalcogen, and precedes the volume with sections on six-mem-
bered hetarenes containing two identical heteroatoms. As the present volume deals with
major hetarenes such as pyridines, quinolines and isoquinolines, including the related
pyridinones, quinolinones and isoquinolinones, it is very substantial in size. These rather
mature hetarenes together make up approximately 75% of the volume content. The re-
mainng nitrogen heterocyclic systems: the quinolizinium salts, naphthyridines, acrid-
dines (and acridinones) and phenanthridines (and phenanthridinones) are relatively
short, but no less interesting in their particular ways. The sections on the related phos-
phorus systems are also relatively brief, reflecting the rather recent but nevertheless
growing development of this area.

The syntheses of most of the hetarenes have been the subject of previous volumes of
Houben–Weyl, those with nitrogen heteroatoms appearing in Volumes E 7a and E 7b,
and those with phosphorus heteroatoms appearing in Volume E 1. There are some differ-
ences between the style of Houben–Weyl and Science of Synthesis. The former was
comprehensive in its coverage, while the latter is more selective. Furthermore, the Houb-
ben–Weyl coverage of pyridines, quinolines, isoquinolines, acridines and phenanthri-
dines did not include formal consideration of the related pyridinones, quinolinones, iso-
quinolinones, acridinones and phenanthridinones. While the current authors would
have found the Houben–Weyl accounts of great use as a source of early literature, they
have had to exercise their expert judgment in selecting the most appropriate material
and then organising it, together with newer material, into quite a different kind of cover-
age. Given the inclusion of specific experimental instructions in both series, it is not sur-
prising that some of the Houben–Weyl examples are quite deliberately and sensibly car-
ried over into Science of Synthesis. The “on-line” nature of the access to experimental
methods in Science of Synthesis provides a dramatic technical advance since Houben–
Weyl was published, and promises to be a major benefit of the current series.

I should like to thank all the authors, who have put such an enormous and altruistic
effort into this volume, for the benefit of the synthetic chemical community. They have
shown serious expertise in their fields, sound judgment, great dedication and considera-
ble patience to bring this volume to fruition. They are to be credited with the high level of
scientific quality displayed. In many cases, the vast amount of literature led to more
lengthy initial contributions, which were then carefully pruned to try and reduce the
overall enormity of the volume. I am also indebted to the publishing team at all levels,
for their total professionalism, efficiency, and friendly working style. In particular, I
should like to thank Dr Joe Richmond, who helped me in the planning and organizational
stages, Dr Fiona Shortt de Hernandez, the Managing Editor, and her team, including Lind-
sey Sturdy, Dr. Karen Muirhead and Leigh Murray, who were always available for detailed
advice and help, and finally Dr Kay Greenfield, whose outstanding copyediting played a
major part in delivering the volume as you see it.

Volume Editor

Sydney, November 2004
Volume 15:
Six-Membered Hetarenes
with One Nitrogen or Phosphorus Atom

Preface ... V

Volume Editor’s Preface .. VII

Table of Contents ... XI

Introduction
D. StC. Black .. 1

15.1 **Product Class 1: Pyridines**
D. Spitzner .. 11

15.2 **Product Class 2: Pyridinones and Related Systems**
P. A. Keller .. 285

15.3 **Product Class 3: Quinolines**
R. D. Larsen and D. Cai ... 389

15.4 **Product Class 4: Quinolinones**
R. D. Larsen ... 551

15.5 **Product Class 5: Isoquinolines**
M. Álvarez and J. A. Joule ... 661

15.6 **Product Class 6: Isoquinolinones**
M. Álvarez and J. A. Joule ... 839

15.7 **Product Class 7: Quinolizinium Salts and Benzo Analogues**
H. Ihmels ... 907

15.8 **Product Class 8: Naphthyridines**
P.-W. Phuan and M. C. Kozlowski ... 947

15.9 **Product Class 9: Acridines**
R. H. Prager and C. M. Williams ... 987

15.10 **Product Class 10: Acridin-9(10H)-ones and Related Systems**
R. H. Prager and C. M. Williams ... 1029

15.11 **Product Class 11: Phenanthridines**
P. A. Keller .. 1065

15.12 **Product Class 12: Phenanthridinones and Related Systems**
P. A. Keller .. 1089

15.13 **Product Class 13: 1λ3-Phosphinines**
F. Mathey and P. Le Floch ... 1097
15.14 Product Class 14: \(1\lambda^5\)-Phosphinines
R. Streubel .. 1157

15.15 Product Class 15: Benzo-Fused And Other Annulated Phosphinines
U. Bergsträßer ... 1181

Keyword Index .. 1191

Author Index ... 1249

Abbreviations .. 1315
Table of Contents

Introduction
D. StC. Black

15.1 Product Class 1: Pyridines
D. Spitzner

15.1 Product Subclass 1: Pyridines

15.1.1 Synthesis by Ring-Closure Reactions

1. **By Formation of Two N—C and Two C—C Bonds**

2. **Fragments C—C, C—C, N, and C**

3. **Method 1:** From 1,3-Diketones or \(\beta \)-Oxo Esters, Aldehydes, and Ammonia, with Subsequent Oxidation (Hantzsch Pyridine Synthesis)

4. **Variation 1:** An Abnormal Ring Closure

5. **Variation 2:** From \(\beta \)-Oxo Cyanides, Aldehydes, and Ammonium Salts

6. **Variation 3:** Alkyl- and Arylpyridines from Aldehydes and Ammonium Salts (Tschitschibabin Synthesis)

7. **Variation 4:** From Ketones, Iminium Compounds, and Ammonium Salts

8. **By Formation of One N—C Bond and Three C—C Bonds**

10. **Method 1:** From Aldehydes, Nitriles, and Methylphosphonates

11. **Variation 1:** From Aldehydes, \(\alpha, \beta \)-Unsaturated Aldehydes, and Hydroxylamine

12. **Variation 2:** From Acyl Enamines, Ketones, and Ammonium Salts

13. **Variation 3:** From Ketones, \(\alpha, \beta \)-Unsaturated Aldehydes or Ketones, and Ammonium Salts

14. **Method 2:** From Acylketene Dithioacetals, Ketones, and Ammonium Salts

15. **Method 3:** From Sulfonium Salts or Sulfur Ylides, \(\alpha, \beta \)-Unsaturated Carbonyl Compounds, and Ammonium Salts

16. **Method 4:** From 1-(2-Oxoalkyl)pyridinium (or Quinolinium/Isouquinolinium) Compounds, \(\alpha, \beta \)-Unsaturated Carbonyl Compounds, and Ammonium Salts

17. **Variation 1:** Cyclization of Ketones with Mannich Salts in the Presence of Ammonium Salts

18. **Method 5:** From Propynols, Enamines, and Ammonium Salts by a Four-Component, One-Pot Procedure
15.1 By Formation of Five C—C Bonds

15.1.1.3 Variation 1: From Propynols, Ketones, and Ammonium Salts 26

15.1.1.4 By Formation of One N—C Bond and Two C—C Bonds 26

15.1.1.4.1 Fragments N—C, C—C, and C—C 26

15.1.1.4.1.1 Method 1: From Nitriles and Alkynes 26

15.1.1.4.1.1.1 Variation 1: From Nitriles and Alkynes by Catalyzed [2+2+2] Cycloaddition 27

15.1.1.4.1.2 Method 2: From Hydrazones and Alkynes 29

15.1.1.4.1.3 Method 3: From Imines and Aldehydes 29

15.1.1.4.1.4 Method 4: From 1-Substituted Phthalazines and Ynamines 30

15.1.1.4.1.5 Method 5: From 1,1-Diethoxy-1,1-dimethylalkanamines or Orthoformates 31

15.1.1.4.1.6 Method 6: From Lithiated Dimethylhydrazones, α,β-Unsaturated Ketones, and α-Oxo Cyanides 33

15.1.1.4.1.7 Method 7: From Enamines, Aldehydes, and 1,3-Dicarbonyl Compounds (Hantzsch Variation) 34

15.1.1.4.1.8 Method 8: From [(Diphenylphosphoryl)imino]ethanes and Aromatic Aldehydes 35

15.1.1.4.1.9 Method 9: From [(Triphenylphosphoranylidene)amino]alkenes, Isocyanates, and Enamines 35

15.1.1.4.2 Fragments N—C—C, C—C, and C 31

15.1.1.4.2.1 Method 1: From Malononitrile, Aldehydes, and Nucleophiles 31

15.1.1.4.2.1.1 Variation 1: From Malononitrile, Aldehydes, Ketones, and Ammonium Salts 31

15.1.1.4.2.1.2 Variation 2: From Malononitrile and 1,1-Diethoxy-1,1-dimethylalkanamines or Orthoformates 32

15.1.1.4.2.2 Method 2: From Lithiated Dimethylhydrazones, α,β-Unsaturated Ketones, and α-Oxo Cyanides 33

15.1.1.4.2.3 Method 3: From Enamines, Aldehydes, and 1,3-Dicarbonyl Compounds (Hantzsch Variation) 34

15.1.1.4.2.4 Method 4: From [[(Diphenylphosphoryl)imino]ethanes and Aromatic Aldehydes 35

15.1.1.4.2.5 Method 5: From [[(Triphenylphosphoranylidene)amino]alkenes, Isocyanates, and Enamines 35

15.1.1.4.3 Fragments C—C—C, N—C, and C 36

15.1.1.4.3.1 Method 1: From Nitriles and Methallyl Dianions 36

15.1.1.4.3.2 Method 2: From Acetonitrile and α,β-Unsaturated Carbonyl Compounds 36

15.1.1.4.3.3 Method 3: From Nitriles, α,β-Unsaturated Ketones, and Carbanions 37

15.1.1.4.3.4 Method 4: From Nitriles and Acylketene N,S-Acetals 37

15.1.1.4.3.5 Method 5: From Nitriles, Lithiated Diethyl Methylphosphonates, and α,β-Unsaturated Ketones 38

15.1.1.5 By Formation of Three C—C Bonds 38

15.1.1.5.1 Fragments C—N—C, C—C, and C 38

15.1.1.5.1.1 Method 1: Pyridin-3-ols from (2-Azaallenyl)pentacarbonylchromium Complexes, Alkynes, and Carbon Monoxide 38

15.1.1.6 By Formation of Two N—C Bonds 39

15.1.1.6.1 Fragments C—C—C—C—C and N 39

15.1.1.6.1.1 Method 1: From 1,5-Dioxo Compounds and Hydroxylamine 39

15.1.1.6.1.1.1 Variation 1: From Partially or Fully Protected 1,5-Dioxo Compounds and Hydroxylamine 40

15.1.1.6.1.2 Variation 2: From Penta-2,4-dienals and Hydroxylamine 41

15.1.1.6.1.2.1 Variation 1: From Hydroxy- or Halo-1,5-dioxo Compounds and Ammonia or Ammonium Salts 42

15.1.1.6.1.2.2 Variation 2: From α,β-Unsaturated 1,5-Dioxo Compounds (or Partially Protected Compounds) and Ammonia or Ammonium Salts 43

15.1.1.6.1.3 Method 3: From Pentamethinammonium Salts and Ammonium Salts 44
15.1.1.7 By Formation of One N—C and One C—C Bond ... 44
15.1.1.7.1 Fragments N—C—C—C and C—C .. 44
15.1.1.7.1.1 Method 1: From (Alkoxymethylene)malononitriles, Enamines, and Ammonia .. 44
15.1.1.7.1.1.1 Variation 1: From Aryldenedemalononitriles and Ketones 45
15.1.1.7.1.2 Method 2: From Malononitrile and Alkyl Halides under Lewis Acid Catalysis 46
15.1.1.7.1.2.1 Variation 1: From N-Alklycyanocacemides or N,N-Dialkylcyanocacemides in the Presence of Phosphoryl Chloride 47
15.1.1.7.1.3 Method 3: From 3-Aminopropenals and Ketones or 1,3-Dicarbonyl Compounds .. 48
15.1.1.7.1.4 Method 4: From 1-Aza-1,3-dienes and Alkenes or Alkynes 48
15.1.1.7.1.4.1 Variation 1: From Alk-2-enal Acylhydrazone and Alkynes or N-Phenylmaleimide .. 49
15.1.1.7.1.4.2 Variation 2: From Alk-2-enal Dimethylhydrazone by [4 + 2] Cycloaddi-
tion .. 50
15.1.1.7.1.4.3 Variation 3: Cyclization of an Intermediate 1-(Dimethylamino)-1-aza-
1,3,5-triene .. 51
15.1.1.7.1.4.4 Variation 4: From Alk-2-enal O-Alkyloximes and Acylalkynes 52
15.1.1.7.1.4.5 Variation 5: From Alk-2-enal N-Alkylimines and Enamines 52
15.1.1.7.1.4.6 Variation 6: From Alk-2-enal Oximes or N-Alkylimines and Carbonyl Compounds .. 53
15.1.1.7.1.4.7 Variation 7: Palladium-Catalyzed Iminoaanulation of Alkynes 53
15.1.1.7.1.4.8 Variation 8: From 4-Amino-1-aza-1,3-dienes and Alkynes 54
15.1.1.7.1.4.9 Variation 9: From 3-[(Triphenylphosphoranylidene)amino]propenals and Acetylenic Esters ... 54
15.1.1.7.1.4.10 Variation 10: From Amidines (2-Amino-1-aza-1,3-dienes) and Electron-Poor Alkynes .. 55
15.1.1.7.1.4.11 Variation 11: From Coordinated 1-Aza-1,3-dienes
(Fischer Carbene Complexes) and Alkynes .. 55
15.1.1.7.1.5 Method 5: From Acrylonitrile and 2,2-Dichlorinated Aldehydes 57
15.1.1.7.1.6 Method 6: From β-Oxo Carbonyl Compounds and Enaminonitriles 57
15.1.1.7.2 Fragments C—C—C—C and N—C ... 58
15.1.1.7.2.1 Method 1: From Alklyldenedemalononitriles and Activated Nitriles 58
15.1.1.7.2.2 Method 2: From Lithiated α,β-Unsaturated Aldimines and Nitriles 59
15.1.1.7.2.3 Method 3: From Bicyclic Acetals and Nitriles 60
15.1.1.7.2.4 Method 4: From Hetero-[4+2] Cycloaddition of Dienes with Nitriles 60
15.1.1.7.2.4.1 Variation 1: From Push-Pull "Captodative" Activated 1,3-Dienes and Nitriles 61
15.1.1.7.2.4.2 Variation 2: From 1-Alkoxybuta-1,3-dienes and Activated Nitriles 61
15.1.1.7.2.4.3 Variation 3: Intramolecular Hetero-[4+2] Cycloaddition of Dienes with (Hydroxyimino)malonates 62
15.1.1.7.2.4.4 Variation 4: Hetero-[4+2] Cycloaddition of Dienes with
N-(Sulfonyloxy)limines ... 62
15.1.1.7.3 Fragments N—C—C and C—C—C ... 63
15.1.1.7.3.1 Method 1: From α-Halogenated Cyanides and α,β-Unsaturated Aldehydes 63
15.1.1.7.3.1.1 Variation 1: From α-(1H-1,2,3-Benzotriazol-1-yl)-Substituted Cyanides and α,β-Unsaturated Ketones 64
15.1.1.7.3.2 Method 2: From Malonamide Derivatives and Unsaturated Compounds

15.1.1.7.3.2.1 Variation 1: From Malononitrile and Unsaturated Compounds in the Presence of a Nucleophile

15.1.1.7.3.3 Method 3: From Enamines and α,β-Unsaturated Cyanides

15.1.1.7.3.4 Method 4: From Enamines or Imines and [3-(Dimethylamino)allylidene]-ammonium Salts

15.1.1.7.3.5 Method 5: From Acyl Enamines and α,β-Unsaturated Carbonyl Compounds

15.1.1.7.3.5.1 Variation 1: From Functionalized Enamines and Alkynes (Bohlmann–Rahtz Synthesis)

15.1.1.7.3.5.2 Variation 2: From Functionalized Enamines and α,β-Unsaturated Carbonyl Compounds

15.1.1.7.3.5.3 Variation 3: From Acyl Enamines and Ethene-1,1-diamines

15.1.1.7.3.5.4 Variation 4: From Enaminonitriles and 1,3-Diketone Enol Ethers (Guareschi–Thorpe-Type Reaction)

15.1.1.7.3.5.5 Variation 5: From N,N-Bis(silylated) Enamines and α,β-Unsaturated Carbonyl Compounds

15.1.1.7.3.5.6 Variation 6: From 3-Aminobut-2-enoates or Acylmethyl Imines and 1,3,3-Triethoxyprop-1-ene

15.1.1.7.3.5.7 Variation 7: From 3-Oxoalkanimidamides or Acyl Enamines and 1,1,3,3-Tetraalkoxypropanes

15.1.1.7.3.5.8 Variation 8: From 3-Aminobut-2-enoates and Mannich Salts

15.1.1.7.3.5.9 Variation 9: From Enaminonitriles and α,β-Unsaturated Carbonyl Compounds

15.1.1.7.3.6 Method 6: From Enaminonitriles and Alkynyl Ortho Amides

15.1.1.7.3.7 Method 7: From Lithiated Imines and α,β-Unsaturated Carbonyl Compounds

15.1.1.7.3.7.1 Variation 1: From N-tert-Butyl Ketimines and α,β-Unsaturated Cyanides

15.1.1.7.3.8 Method 8: From (Vinylimino)phosphoranes and α,β-Unsaturated Carbonyl Compounds (Aza-Wittig Reaction)

15.1.1.7.3.8.1 Variation 1: From [(Diphenylphosphoryl)imino]alkanes and α,β-Unsaturated Aldehydes or Ketones

15.1.1.7.4 Fragments N—C—C—C—C and C

15.1.1.7.4.1 Method 1: From Iminophosphoranes and Isocyanates by a Domino Aza-Wittig Electrocyclization Reaction

15.1.1.7.4.2 Method 2: From Alkylidenemalononitriles

15.1.1.7.4.3 Method 3: From 1-Amino-4-nitro-1,3-dienes and Orthoformates or Acetic Anhydride

15.1.1.8 By Formation of Two C—C Bonds

15.1.1.8.1 Fragments C—N—C—C and C—C

15.1.1.8.1.1 Method 1: From N-Vinylcarbodiimides and Alkynes

15.1.1.8.1.1.1 Variation 1: From N-Vinylcarbodiimides and Enamines

15.1.1.8.1.1.2 Variation 2: From N-Vinylcarbodiimides and Ynamines

15.1.1.8.1.2 Method 2: From 2-Azabuta-1,3-dienes and Alkynes

15.1.1.8.1.2.1 Variation 1: From 2-Aza-1,3-dienes and Enamines