Automation Solutions for Analytical Measurements
Automation Solutions for Analytical Measurements

Concepts and Applications

Heidi Fleischer
Kerstin Thurow
Contents

Preface ix

1 **Introduction** 1
1.1 Life Sciences – A Definition 1
1.1.1 A Short Definition of Life 1
1.1.2 What Is Life Sciences? 2
1.2 Automation – A Definition 4
1.3 History of Automation 5
1.3.1 Automation from the Beginnings to the Nineteenth Century 5
1.3.2 Automation Since the Nineteenth Century 10
1.3.3 History of Laboratory Automation 12
1.4 Impact of Automation 15
1.4.1 Advantages and Disadvantages of Automation 15
1.4.2 Social Impact of Automation 16
1.4.3 Limitation of Automation 17

References 18

2 **Automation in Life Sciences – A Critical Review** 25
2.1 Overview 25
2.2 Definitions and Basics 26
2.3 Automation in Bioscreening 28
2.3.1 Overview 28
2.3.2 Automation Devices in Biological Screening 31
2.3.2.1 Standardization of Sample Formats 31
2.3.2.2 Robots in Bioautomation 33
2.3.2.3 Liquid-Handling Systems 34
2.3.2.4 Additional Components 37
2.3.3 Application Examples 40
2.4 Automation in Chemical Sciences 43
2.4.1 Overview 43
2.4.2 Automation Devices for Combinatorial Chemistry 45
2.4.2.1 Vessel Based Systems 46
2.4.2.2 Microplate-Based Systems 48
2.4.2.3 Robot-Based Synthesis Systems 48
2.4.3 Application Examples 49
2.5 Automation in Analytical Measurement Applications 51
2.5.1 Overview 51
2.5.2 Process Analytical Technology 52
2.5.3 Automation Systems for Analytical Measurement Applications 54
2.6 Requirements for Automating Analytical Processes 56
2.6.1 Bioscreening vs. Analytical Measurement 56
2.6.1.1 Vessels and Vials in Analytical Processes 56
2.6.1.2 Liquids and Reagents in Analytical Measurement 58
2.6.1.3 Process Structure 58
2.6.2 Automation Requirements 58
References 61

3 Automation Concepts for Life Sciences 73
3.1 Classification of Automation Systems 73
3.2 Classification Concept for Life Science Processes 75
3.3 Robot Based Automation Systems 78
3.3.1 Robot Based Systems in Industrial Automation 78
3.3.2 Robot-Based Automation Systems in Life Sciences 79
3.3.2.1 Concept of the Central Robot as System Integrator 79
3.3.2.2 Concept of the Flexible Robot 80
3.3.3 Summary and Application of Concepts 81
3.4 Degree of Automation 83
3.5 Statistical Evaluations 86
References 89

4 Automation Systems with Central System Integrator 93
4.1 Centralized Closed Automation System 93
4.1.1 Background and Applicative Scope 93
4.1.2 Automation Goals 98
4.1.3 System Design 99
4.1.4 Process Description 102
4.1.5 Control of the Automation Process 103
4.1.6 Evaluation of the Automation System 104
4.2 Centralized Open Automation System 109
4.2.1 Background and Applicative Scope 109
4.2.1.1 Determination of Mercury in Waste Wood 109
4.2.1.2 Determination of Methacrylates in Dental Materials 111
4.2.2 Automation Goals 114
4.2.2.1 Determination of Mercury in Waste Wood 114
4.2.2.2 Determination of Methacrylates in Dental Materials 115
4.2.3 System Design 116
4.2.4 Process Description 121
4.2.4.1 Process Description for Determination of Mercury in Waste Wood 121
4.2.4.2 Process Description for the Determination of Methacrylates in Dental Materials 122
4.2.5 Control of the Automation Process 124
4.2.6 Evaluation of the Automation System 126
4.3 Decentralized Closed Automation System 130
4.3.1 Background and Applicative Scope 131
4.3.2 Automation Goals 132
4.3.3 System Design 134
4.3.4 Process Description 135
4.3.5 Control of the Automation Process 136
4.3.6 Evaluation of the Automation System 136
4.4 Decentralized Open Automation System 143
4.4.1 System Design 144
4.4.2 Process Description 144
4.4.3 Control of the Automation System 145

References 148

5 Automation Systems with Flexible Robots 167
5.1 Centralized Closed Automation System 167
5.1.1 System Design 167
5.1.2 Process Description 174
5.1.3 Control of the Automation System 174
5.1.4 Results 179
5.2 Centralized Open Automation System 180
5.2.1 Background and Applicative Scope 180
5.2.2 Automation Goals 183
5.2.3 System Design 184
5.2.4 Process Description 186
5.2.5 Control of the Automation System 187
5.2.6 Results 189
5.3 Decentralized Automation System 191
5.3.1 System Design 192
5.3.2 Process Description 193
5.3.3 Control of the Automation System 193
5.4 Automation Systems with Integrated Robotics 194
5.4.1 System Design 196
5.4.2 Process Description 198
5.4.3 Process Control 198
References 200

6 Automated Data Evaluation in Life Sciences 205
6.1 Specific Tasks in Data Evaluation in Analytical Measurements 205
6.2 Automation Goals 207
6.3 System Design 208
6.4 System Realization 211
6.4.1 Software Structure 211
6.4.2 Software Operation 214
6.5 Process Description 220
6.6 Application Examples 222
Contents

6.6.1 Automated Data Analysis in the Elemental Analysis 222

6.6.2 Automated Data Analysis in the Structural Analysis 224

6.6.3 Automated Data Analysis in Special Applications 225

References 226

7 Management of Automated Processes 231

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Laboratory Information Systems</td>
<td>231</td>
</tr>
<tr>
<td>7.2 Laboratory Execution Systems</td>
<td>231</td>
</tr>
<tr>
<td>7.3 Process and Workflow Management Systems</td>
<td>232</td>
</tr>
<tr>
<td>7.3.1 Overview</td>
<td>232</td>
</tr>
<tr>
<td>7.3.2 Intelligent Scheduling</td>
<td>234</td>
</tr>
<tr>
<td>7.3.3 Human Machine Interaction</td>
<td>236</td>
</tr>
<tr>
<td>7.4 Business Process Management Systems</td>
<td>239</td>
</tr>
<tr>
<td>7.4.1 Initial BPM Activities</td>
<td>239</td>
</tr>
<tr>
<td>7.4.2 Relationship to Scientific Workflow Management</td>
<td>241</td>
</tr>
<tr>
<td>7.4.3 Life Science Automation Industry Application of BPM</td>
<td>241</td>
</tr>
<tr>
<td>7.4.4 Status of Life Science Automation</td>
<td>242</td>
</tr>
<tr>
<td>7.4.5 Laboratory IT Integration Status</td>
<td>245</td>
</tr>
<tr>
<td>7.4.6 Innovation in End-to-End Process Automation</td>
<td>245</td>
</tr>
<tr>
<td>7.4.7 Workflow Automation as a New Top-Level Process Automation</td>
<td>246</td>
</tr>
<tr>
<td>7.4.8 Outstanding Position of LIMS as an Established Process</td>
<td>248</td>
</tr>
<tr>
<td>Documentation System</td>
<td>248</td>
</tr>
<tr>
<td>References</td>
<td>248</td>
</tr>
</tbody>
</table>

Index 255
Preface

Automation systems with applied robotics have already been established in industrial applications for many years. In the field of life sciences, a comparable high level of automation can be found in the areas of bioscreening as well as high-throughput screening. Strong deficits still exist in the development of flexible and universal fully automated systems in the field of analytical measurements. Reasons are the heterogenous processes with complex structures, which include sample preparation and transport, analytical measurements using complex sensor systems as well as suitable data analysis and evaluation. Furthermore, the use of non-standard sample vessels with various shapes and volumes results in an increased complexity. The state of the art includes automated workstations, semi-automated systems, or proprietary fully automated systems, which have been developed for specific applications. In general, a flexible use of automation systems for different applications is a challenging scientific task.

The development of appropriate automation systems in the field of analytical measurements using analytical instruments and complex sensor systems initially requires a systematic analysis of the processes to be automated with the aim to develop suitable structures and allocate them to these processes. In industrial applications, eight different structures can be distinguished according to their centralized or decentralized process structure, local, and functional structure. In analytical measurement technology, there are limitations regarding a general applicability of these structures, thus, an adequate adaption is required. Analytical processes are always characterized by a decentralized process structure. This enables a distinction according to their local and applicative structure. Depending on the robot technology used, two basic automation concepts can be applied to processes in analytical measurements: central system integrators and flexible robots. For a maximum versatility of the processes to be automated an extension to a third concept – integrated robotics – is possible.

Due to their high flexibility, robots can be used as transport systems. This enables a connection of the individual subprocesses and workstations, whereby the robot has the function of a central system integrator. A higher flexibility of an automation system can be achieved when, besides transportation tasks, the robot additionally performs active manipulation tasks, whereby the robot has
the function of a flexible robot. A further increase in flexibility can be achieved using mobile robots, which perform both, transportation tasks between various subsystems and manipulation tasks. For an efficient workload of such robots, some of these tasks can be performed even during the transport.

This book will provide a substantial contribution to the development and systematization of appropriate automation systems in the life sciences, in particular, in the field of analytical measurement technique. The first chapter gives a widespread overview about the history and the impact of automation systems in the field of life sciences. The second chapter involves a critical review of existing automation systems in bioscreening, chemical sciences, and analytical measurement applications. The chapter begins with general definitions and basics and concludes with the requirements for automating analytical measurement processes. The third chapter is particularly dedicated to the theoretical view on automation structures and presents general automation concepts for analytical measurement processes. The theoretical considerations are completed with delineations regarding the degree of automation and statistical evaluations. The fourth and fifth chapters present realized automation concepts with a central system integrator and a flexible robot. Therefore, special applications from various areas are introduced. This includes applications in environmental measuring technology, medicine, drug development, and drug discovery as well as quality assurance. The goal is to achieve a high degree of automation with maximum sample throughput, short processing, and measurement times with a special focus on the applicative flexibility of the automated systems. The systems are described in detail and the evaluation is done on both, the process performance and the measurement results achieved. The sixth chapter is related to the software development for automated data evaluation. The challenge was developing a flexible solution, which enables the integration of several analytical measurement instruments from different manufacturers to ensure a fully automated process, including the sample preparation, the measurement, and the final data evaluation. The last chapter is dedicated to the high-level management of automated processes and discusses several management systems used in the field of laboratory automation.

The authors would like to express their personal thanks to Prof. Dr.-Ing. Norbert Stoll for his support and valuable discussions. Our special thanks go to the company Yaskawa, especially Dr.-Ing. Michael Klos and B.Eng. Wolfgang Schuberthan for providing the dual-arm robot SDA10F and for the support in generating the robot jobs. We would like to acknowledge our thanks to the Federal Ministry for Education and Research (BMBF) for partially supporting several projects. For the realization of the automation systems in detail, we thank the members of the following research groups at CELISCA (Center for Life Science Automation) at the University of Rostock: research group “Life Science Automation – Systems” under the guidance of Dr.-Ing. Steffen Junginger, research group “Life Science Automation – Mobile Robotics” under the guidance of Priv.-Doz. Dr.-Ing. habil. Hui Liu, research group “Life Science
Automation – Process IT” under the guidance of Dr.-Ing. Sebastian Neubert, and research group “Life Science Automation – Processes” under the guidance of Priv.-Doz. Dr.-Ing. habil. Heidi Fleischer. Finally, we wish to thank all the students for their contributions within the scope of their bachelor and master theses.

We wish all users of this book an interesting and informative read.

December 2016
Rostock, Germany

Heidi Fleischer
Kerstin Thurow
1

Introduction

1.1 Life Sciences – A Definition

1.1.1 A Short Definition of Life

The term life sciences is ubiquitously integrated into our everyday life. It has become a standard expression. To understand the content, challenges, and tendencies of life sciences, it is necessary to define the term life. Today, there exist more than 50 different definitions depending on the scientific field and the strategic focus. In general, life can be defined as a characteristic property, which separates living matter from inorganic matter. The main characteristics include the exchange of matter and energy, reproduction, and growth.

The definition of the term life in philosophy also follows these criteria [1]. Aristotle differentiated three levels of life in a hierarchical order. The lowest level included plants, whose life is characterized only by nutrition and reproduction. The next level included animals, which have the additional features of sensory perception and movement. The human, whose life is, besides the fundamental functions, characterized by thinking processes, is the highest level in Aristotle’s hierarchy.

In the western philosophy of the modern era, two contrary general opinions developed: mechanism [2] and vitalism [3]. Promoters of mechanism explain life processes from the concept of physical laws of movement. The living organism is considered a machine. Main supporters of this idea were William Harvey (1578–1657), Rene Descartes (1596–1650), and Wilhelm Roux (1850–1924). In contrast to this idea, vitalism proposed a significant difference between organic and inorganic matter, whereby life is connected to organic compounds. A targeted living power (vis vitalis) characterizes all living matter. Main supporters of vitalism include Jan Baptist van Helmont (1577–1644), Georg Ernst Stahl (1660–1734), Albrecht von Haller (1708–1777), and Johann Friedrich Blumenbach (1752–1840). Since the synthesis of urea by Friedrich Wöhler (1800–1882), this approach was deprecated, since it could be shown that no special living power is required for the synthesis of organic compounds. A combination of mechanism and vitalism is the organicism [4]. This approach explains processes of life using science principles from physics and chemistry. Living organisms are supposed to have properties that cannot be found in inorganic matter.