Acta Neurochirurgica
Supplements
Editor: H.-J. Steiger
Brain Edema XIII

Edited by
J.T. Hoff, R.F. Keep, G. Xi, and Y. Hua (eds.)

Acta Neurochirurgica
Supplement 96

SpringerWienNewYork
Preface

The XIII International Symposium on Brain Edema and Tissue Injury was held June 1–3, 2005, in Ann Arbor, Michigan, USA. This volume includes papers presented at the symposium as well as papers that were presented at a satellite Intracerebral Hemorrhage Conference on June 4, 2005. In keeping with the outstanding XII Symposium held in Hakone, Japan in 2002, we chose to include brain tissue injury as well as brain edema as the subject matter for this meeting. Brain edema, in many respects, is a marker of underlying pathological processes which include tissue injury from many diseases.

The scientific sessions included invited speakers, oral presentations, poster sessions, and panel discussions. The meeting emphasized scientific excellence in a congenial atmosphere focusing on both basic and clinical science.

The symposium featured basic science research presentations as well as clinical observations in a variety of categories, including traumatic brain injury, cerebral hemorrhage, cerebral ischemia, hydrocephalus, intracranial pressure, water channels, and blood-brain barrier disruption. The recent increase of interest in intracerebral hemorrhage, including the primary event and the secondary injury that follows, prompted a one-day satellite conference on the subject. The conference was held immediately after the Brain Edema Symposium. Most participants in the Brain Edema Symposium stayed an extra day to learn about the latest developments in intracerebral hemorrhage research, including ongoing clinical trials and basic research investigation focusing primarily on the secondary events which develop after the hemorrhage.

There was considerable enthusiasm to continue the Brain Edema Symposium series at the conclusion of the thirteenth meeting. The Advisory Board chose Warsaw, Poland as the next site for the meeting under the direction of Professor Zbigniew Czernicki and his colleagues. Symposium attendees look forward to a successful meeting in that city in 2008.

The editors wish to thank Ms. Kathleen Donahoe, Ms. Holly Wagner, and the staff of Springer-Verlag for the commitment and editorial skills necessary to prepare this volume for publication.

Julian T. Hoff, Richard Keep, Guohua Xi, and Ya Hua
Acknowledgments

The Editors would like to express their sincere thanks to those who made the Brain Edema XIII Symposium and the satellite Intracerebral Hemorrhage Conference possible. Thanks are due especially to the International and Local Advisory Boards for both meetings:

Brain Edema XIII

International Advisory Board
- A. Baethmann
- Z. Czernicki
- U. Ito
- Y. Katayama
- T. Kuroiwa
- A. Marmarou
- A. D. Mendelow

Local Organizing Committee
- J. T. Hoff (Chair)
- W. G. Barsan
- R. F. Keep
- L. B. Morgenstern
- Y. Hua
- G. Xi

Intracerebral Hemorrhage Conference

International Advisory Board
- J. Aronowski
- K. J. Becker

Local Organizing Committee
- J. R. Carhuapoma
- D. F. Hanley
- S. A. Mayer
- A. D. Mendelow
- S. Nagao
- R. J. Traystman
- K. R. Wagner
- M. Zuccarello

The meeting would not have been possible without the hard work of Kathleen Donahoe and Heidi Zayan as Secretariat, Pamela Staton and members of University of Michigan Conference Management Services, Drs. Yangdong He, Shuijiang Song, and Wenquan Liu (Department of Neurosurgery, University of Michigan) for their expertise with the audio/visual presentations, and Drs. John Cowan and Jean-Christophe Leveque (Department of Neurosurgery, University of Michigan) for design and maintenance of the Brain Edema 2005 website.

We would also like to thank the National Institutes of Health and NovoNordisk for providing educational grants in support of the meeting.
Contents

Human Brain Injury

Kawamata, T., Katayama, Y.:
Surgical management of early massive edema caused by cerebral contusion in head trauma patients... 3

Chambers, I. R., Barnes, J., Piper, I., Citerio, G., Enblad, P., Howells, T., Kiening, K., Mattern, J.,
Nilsson, P., Ragauskas, A., Sahuquillo, J. and Yau, Y. H. for the BrainIT Group:
BrainIT: a trans-national head injury monitoring research network ... 7

Timofeev, I., Kirkpatrick, P. J., Croteen, E., Hiler, M., Czosnyka, M., Menon, D. K., Pickard, J. D.,
Hutchinson, P. J.:
Decompressive craniectomy in traumatic brain injury: outcome following protocol-driven therapy 11

Hutchinson, P. J., Croteen, E., Czosnyka, M., Mendelow, A. D., Menon, D. K., Mitchell, P., Murray, G.,
Pickard, J. D., Rickels, E., Sahuquillo, J., Servadei, F., Teasdale, G. M., Timofeev, I., Unterberg, A.,
Kirkpatrick, P. J.:
Decompressive craniectomy in traumatic brain injury: the randomized multi center RESCUEicp study
(www.RESCUEicp.com) ... 17

Ng, S. C. P., Poon, W. S., Chan, M. T. V.:
Cerebral hemisphere asymmetry in cerebrovascular regulation in ventilated traumatic brain injury 21

Marmarou, A., Signoretti, S., Aygok, G., Fatouros, P., Portella, G.:
Traumatic brain edema in diffuse and focal injury: cellular or vasogenic? 24

Beaumont, A., Gennarelli, T.:
CT prediction of contusion evolution after closed head injury: the role of pericontusional edema 30

Utagawa, A., Sakurai, A., Kinoshita, K., Moriya, T., Okuno, K., Tanjoh, K.:
Organ dysfunction assessment score for severe head injury patients during brain hypothermia 33

Kinoshita, K., Sakurai, A., Utagawa, A., Ebihara, T., Furukawa, M., Moriya, T., Okuno, K.,
Yoshitake, A., Noda, E., Tanjoh, K.:
Importance of cerebral perfusion pressure management using cerebrospinal drainage in severe traumatic
brain injury ... 37

Mori, T., Katayama, Y., Kawamata, T.:
Acute hemispheric swelling associated with thin subdural hematomas: pathophysiology of repetitive head
injury in sports .. 40

Kinoshita, K., Utagawa, A., Ebihara, T., Furukawa, M., Sakurai, A., Noda, A., Moriya, T., Tanjoh, K.:
Rewarming following accidental hypothermia in patients with acute subdural hematoma: case report 44
Furukawa, M., Kinoshita, K., Ebihara, T., Sakurai, A., Noda, A., Kitahata, Y., Utagawa, A., Moriya, T., Okuno, K., Tanjoh, K.:
Clinical characteristics of postoperative contralateral intracranial hematoma after traumatic brain injury 48

Human Intracranial Hemorrhage

Compagnone, C., Tagliaferri, F., Fainardi, E., Tanfani, A., Pascarella, R., Ravaldini, M., Targa, L., Chieregato, A.:
Diagnostic impact of the spectrum of ischemic cerebral blood flow thresholds in sedated subarachnoid hemorrhage patients .. 53

Dohi, K., Jimbo, H., Ikeda, Y., Fujita, S., Ohtaki, H., Shioda, S., Abe, T., Aruga, T.:
Pharmacological brain cooling with indomethacin in acute hemorrhagic stroke: antiinflammatory cytokines and antioxidative effects ... 57

Prasad, K. S. M., Gregson, B. A., Bhattathiri, P. S., Mitchell, P., Mendelow, A. D.:
The significance of crossovers after randomization in the STICH trial .. 61

Bhattathiri, P. S., Gregson, B., Prasad, K. S. M., Mendelow, A. D.:
Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: results from the STICH trial .. 65

Ebihara, T., Kinoshita, K., Utagawa, A., Sakurai, A., Furukawa, M., Kitahata, Y., Tominaga, Y., Chiba, N., Moriya, T., Nagao, K., Tanjoh, K.:
Changes in coagulative and fibrinolytic activities in patients with intracranial hemorrhage 69

Okuda, M., Suzuki, R., Moriya, M., Fujimoto, M., Chang, C. W., Fujimoto, T.:
The effect of hematoma removal for reducing the development of brain edema in cases of putaminal hemorrhage ... 74

Wu, G., Xi, G., Huang, F.:
Spontaneous intracerebral hemorrhage in humans: hematoma enlargement, clot lysis, and brain edema . 78

Fainardi, E., Borrelli, M., Saletti, A., Schivalocchi, R., Russo, M., Azzini, C., Cavollo, M., Ceruti, S., Tamarozzi, R., Chieregato, A.:
Evaluation of acute perihematoma regional apparent diffusion coefficient abnormalities by diffusion-weighted imaging. .. 81

Tagliaferri, F., Compagnone, C., Fainardi, E., Tanfani, A., Pascarella, R., Sarpieri, F., Targa, L., Chieregato, A.:
Reperfusion of low attenuation areas complicating subarachnoid hemorrhage 85

Human Cerebral Ischemia

Nanda, A., Vannemreddy, P., Willis, B., Kelley, R.:
Stroke in the young: relationship of active cocaine use with stroke mechanism and outcome 91

Sakurai, A., Kinoshita, K., Inada, K., Furukawa, M., Ebihara, T., Moriya, T., Utagawa, A., Kitahata, Y., Okuno, K., Tanjoh, K.:
Brain oxygen metabolism may relate to the temperature gradient between the jugular vein and pulmonary artery after cardiopulmonary resuscitation .. 97
Imaging/Monitoring

Daley, M. L., Leffler, C. W., Czosnyka, M., Pickard, J. D.:
Intracranial pressure monitoring: modeling cerebrovascular pressure transmission 103

Guendling, K., Smielewski, P., Czosnyka, M., Lewis, P., Nortje, J., Timofeev, I., Hutchinson, P. J.,
Pickard, J. D.:
Use of ICM+ software for on-line analysis of intracranial and arterial pressures in head-injured patients. 108

Czosnyka, M., Hutchinson, P. J., Balestreri, M., Hiler, M., Smielewski, P., Pickard, J. D.:
Monitoring and interpretation of intracranial pressure after head injury .. 114

Experimental Brain Injury

O'Connor, C. A., Cernak, I., Vink, R.:
The temporal profile of edema formation differs between male and female rats following diffuse traumatic brain injury .. 121

James, H. E.:
The effect of intravenous fluid replacement on the response to mannitol in experimental cerebral edema: an analysis of intracranial pressure, serum osmolality, serum electrolytes, and brain water content 125

Shigemori, Y., Katayama, Y., Mori, T., Maeda, T., Kawamata, T.:
Matrix metalloproteinase-9 is associated with blood-brain barrier opening and brain edema formation after cortical contusion in rats .. 130

Nakamura, T., Miyamoto, O., Yamashita, S., Keep, R. F., Itano, T., Nagao, S.:
Delayed precursor cell marker response in hippocampus following cold injury-induced brain edema..... 134

Sakowitz, O. W., Schardt, C., Neher, M., Stover, J. F., Unterberg, A. W., Kiening, K. L.:
Granulocyte colony-stimulating factor does not affect contusion size, brain edema or cerebrospinal fluid glutamate concentrations in rats following controlled cortical impact .. 139

Li, S., Kuroiwa, T., Katsumata, N., Ishibashi, S., Sun, L., Endo, S., Ohno, K.:
Unilateral spatial neglect and memory deficit associated with abnormal β-amyloid precursor protein accumulation after lateral fluid percussion injury in Mongolian gerbils ... 144

Ohsumi, A., Navashiro, H., Otani, N., Ooigawa, H., Toyooka, T., Yano, A., Nomura, N., Shima, K.:
Alteration of gap junction proteins (connexins) following lateral fluid percussion injury in rats 148

Vannemreddy, P., Ray, A. K., Patnaik, R., Patnaik, S., Mohanty, S., Sharma, H. S.:
Zinc protoporphyrin IX attenuates closed head injury-induced edema formation, blood-brain barrier disruption, and serotonin levels in the rat ... 151

Uchino, H., Morota, S., Takahashi, T., Ikeda, Y., Kudo, Y., Ishii, N., Siesjö, B. K.,
Shibasaki, F.:
A novel neuroprotective compound FR901459 with dual inhibition of calcineurin and cyclophilins 157

Ishikawa, Y., Uchino, H., Morota, S., Li, C., Takahashi, T., Ikeda, Y., Ishii, N., Shibasaki, F.:
Search for novel gene markers of traumatic brain injury by time differential microarray analysis 163

Zhao, F. Y., Kuroiwa, T., Miyasakai, N., Tamabe, F., Nagaoka, T., Akimoto, H., Ohno, K., Tamura, A.:
Diffusion tensor feature in vasogenic brain edema in cats ... 168
Beaumont, A., Fatouros, P., Gennarelli, T., Corwin, F., Marmarou, A.:
Bolus tracer delivery measured by MRI confirms edema without blood-brain barrier permeability in
diffuse traumatic brain injury .. 171

Experimental Intracranial Hemorrhage

Wagner, K. R., Beiler, S., Beiler, C., Kirkman, J., Casey, K., Robinson, T., Larnard, D., de Courten-
Myers, G. M., Linke, M. J., Zuccarello, M.:
Delayed profound local brain hypothermia markedly reduces interleukin-1β gene expression and
vasogenic edema development in a porcine model of intracerebral hemorrhage 177

Shao, J., Xi, G., Hua, Y., Schallert, T., Felt, B. T.:
Alterations in intracerebral hemorrhage-induced brain injury in the iron deficient rat 183

Ostrowski, R. P., Colohan, A. R. T., Zhang, J. H.:
Neuroprotective effect of hyperbaric oxygen in a rat model of subarachnoid hemorrhage 188

Nakamura, T., Keep, R. F., Hua, Y., Nagao, S., Hoff, J. T., Xi, G.:
Iron-induced oxidative brain injury after experimental intracerebral hemorrhage 194

Wan, S., Hua, Y., Keep, R. F., Hoff, J. T., Xi, G.:
Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage 199

Yang, S., Hua, Y., Nakamura, T., Keep, R. F., Xi, G.:
Up-regulation of brain ceruloplasmin in thrombin preconditioning 203

Ozolins, K. R., Shakui, P., Keep, R. F.:
Hydrocephalus in a rat model of intraventricular hemorrhage .. 207

Kawai, N., Nakamura, T., Nagao, S.:
Early hemostatic therapy using recombinant factor VIIa in collagenase-induced intracerebral
hemorrhage model in rats .. 212

Nakamura, T., Xi, G., Keep, R. F., Wang, M., Nagao, S., Hoff, J. T., Hua, Y.:
Effects of endogenous and exogenous estrogen on intracerebral hemorrhage-induced brain damage in
rats ... 218

Cannon, J. R., Nakamura, T., Keep, R. F., Richardson, R. J., Hua, Y., Xi, G.:
Dopamine changes in a rat model of intracerebral hemorrhage .. 222

Yang, S., Nakamura, T., Hua, Y., Keep, R. F., Younger, J. G., Hoff, J. T., Xi, G.:
Intracerebral hemorrhage in complement C3-deficient mice .. 227

Gong, Y., Tian, H., Xi, G., Keep, R. F., Hoff, J. T., Hua, Y.:
Systemic zinc protoporphyrin administration reduces intracerebral hemorrhage-induced brain injury 232

Experimental Cerebral Ischemia

Ito, U., Kawakami, E., Nagasao, J., Kuroiwa, T., Nakano, I., Oyanagi, K.:
Restitution of ischemic injuries in penumbra of cerebral cortex after temporary ischemia 239

Inhibition of Na+/H+ exchanger isoform 1 attenuates mitochondrial cytochrome C release in cortical
neurons following in vitro ischemia .. 244
Ohtaki, H., Nakamachi, T., Dohi, K., Yofu, S., Hodoyama, K., Matsunaga, M., Aruga, T., Shioda, S.: Controlled normothermia during ischemia is important for the induction of neuronal cell death after global ischemia in mouse. 249

Kuroiwa, T., Yamada, I., Katsumata, N., Endo, S., Ohno, K.: Ex vivo measurement of brain tissue viscoelasticity in post ischemic brain edema 254

Kleindienst, A., Dunbar, J. G., Glisson, R., Okuno, K., Marmarou, A.: Effect of dimethyl sulfoxide on blood-brain barrier integrity following middle cerebral artery occlusion in the rat 258

Turner, R. J., Blumbergs, P. C., Sims, N. R., Helps, S. C., Rodgers, K. M., Vink, R.: Increased substance P immunoreactivity and edema formation following reversible ischemic stroke 263

Pluta, R., Ulamek, M., Januszewski, S.: Micro-blood-brain barrier openings and cytotoxic fragments of amyloid precursor protein accumulation in white matter after ischemic brain injury in long-lived rats 267

Sun, L., Kuroiwa, T., Ishibashi, S., Katsumata, N., Endo, S., Mizusawa, H.: Time profile of eosinophilic neurons in the cortical layers and cortical atrophy 272

Ennis, S. R., Keep, R. F.: Forebrain ischemia and the blood-cerebrospinal fluid barrier 276

Katsumata, N., Kuroiwa, T., Yamada, I., Tanaka, Y., Ishibashi, S., Endo, S., Ohno, K.: Neurological dysfunctions versus apparent diffusion coefficient and T2 abnormality after transient focal cerebral ischemia in Mongolian gerbils 279

Ohtaki, H., Fujimoto, T., Sato, T., Kishimoto, K., Fujimoto, M., Moriya, M., Shioda, S.: Progressive expression of vascular endothelial growth factor (VEGF) and angiogenesis after chronic ischemic hypoperfusion in rat 283

Sharma, H. S., Wiklund, L., Badgaiyan, R. D., Mohanty, S., Alm, P.: Intracerebral administration of neuronal nitric oxide synthase antiserum attenuates traumatic brain injury-induced blood-brain barrier permeability, brain edema formation, and sensory motor disturbances in the rat 288

Ennis, S. R., Keep, R. F.: Effects of 2,4-dinitrophenol on ischemia-induced blood-brain barrier disruption 295

Ishibashi, S., Kuroiwa, T., LiYuan, S., Katsumata, N., Li, S., Endo, S., Mizusawa, H.: Long-term cognitive and neuropsychological symptoms after global cerebral ischemia in Mongolian gerbils 299

Experimental Spinal Cord Injury

Sharma, H. S., Nyberg, F., Gordh, T., Alm, P.: Topical application of dynorphin A (1–17) antibodies attenuates neuronal nitric oxide synthase up-regulation, edema formation, and cell injury following a focal trauma to the rat spinal cord 309
Sharma, H. S., Vannemreddy, P., Patnaik, R., Patnaik, S., Mohanty, S.:
Histamine receptors influence blood-spinal cord barrier permeability, edema formation, and spinal cord
blood flow following trauma to the rat spinal cord .. 316

Sharma, H. S., Sjöquist, P. O., Mohanty, S., Wiklund, L.:
Post-injury treatment with a new antioxidant compound H-290/51 attenuates spinal cord trauma-induced
\textit{c-fos} expression, motor dysfunction, edema formation, and cell injury in the rat 322

Sharma, H. S.:
Post-traumatic application of brain-derived neurotrophic factor and glia-derived neurotrophic factor on
the rat spinal cord enhances neuroprotection and improves motor function.......................... 329

Gordh, T., Sharma, H. S.:
Chronic spinal nerve ligation induces microvascular permeability disturbances, astrocytic reaction, and
structural changes in the rat spinal cord... 335

Hydrocephalus

Kiefer, M., Meier, U., Eymann, R.:
Gravitational valves: relevant differences with different technical solutions to counteract hydrostatic
pressure ... 343

Aygok, G., Marmarou, A., Fatouros, P., Young, H.:
Brain tissue water content in patients with idiopathic normal pressure hydrocephalus 348

Meier, U., Lemecke, J., Neumann, U.:
Predictors of outcome in patients with normal-pressure hydrocephalus 352

Meier, U., Kiefer, M., Neumann, U., Lemecke, J.:
On the optimal opening pressure of hydrostatic valves in cases of idiopathic normal-pressure
hydrocephalus: a prospective randomized study with 123 patients .. 358

Kiefer, M., Eymann, R., Steudel, W. I.:
Outcome predictors for normal-pressure hydrocephalus ... 364

Meier, U., Lemecke, J.:
First clinical experiences in patients with idiopathic normal-pressure hydrocephalus with the adjustable
gravity valve manufactured by Aesculap (proGAV\textsuperscript{Aesculap*}) .. 368

Meier, U., Lemecke, J., Reyer, T., Gräwe, A.:
Decompressive craniectomy for severe head injury in patients with major extracranial injuries 373

Meier, U., Lemecke, J.:
Clinical outcome of patients with idiopathic normal pressure hydrocephalus three years after shunt
implantation ... 377

Meier, U., Lemecke, J.:
Is it possible to optimize treatment of patients with idiopathic normal pressure hydrocephalus by
implanting an adjustable Medos Hakim valve in combination with a Miethke shunt assistant? 381

Aquaporins

Binder, D. K., Yao, X., Verkman, A. S., Manley, G. T.:
Increased seizure duration in mice lacking aquaporin-4 water channels 389