Joseph John Bevelacqua

Health Physics
Related Titles
Joseph John Bevelacqua
Basic Health Physics: Problems and Solutions
Second Edition
2010
ISBN: 978-3-527-40823-8

Joseph John Bevelacqua
Health Physics in the 21st Century
2008
ISBN: 978-3-527-40822-1

Joseph John Bevelacqua
Contemporary Health Physics: Problems and Solutions
Second Edition
2009
ISBN: 978-3-527-40824-5
Health Physics

Radiation-Generating Devices, Characteristics, and Hazards
This book is dedicated to my wife Terry

and

Sammy, Chelsea, Molly, and Eli

and

Anthony, Stayce, Lucy, Anna, Samuel, Matthew, and Henry

and

Jeffrey, David, and Hannah

and

Megan, Marlando, Isaiah, and Annabelle

and

Peter and Jessica

and

Michael, Tara, Lauren, Janelle, and Lucas

and

Karen, Adam, and Hemma
Contents

Preface XXI
Acknowledgments XXV
A Note on Units XVII

Part I Overview of Health Physics: Radiation-Generating Devices, Characteristics, and Hazards 1

1 Introduction to Twenty-First Century Health Physics 3
1.1 Overview of Twenty-First Century Health Physics 3
1.2 Health Physics Issues, Challenges, and Opportunities 3
1.3 Forecast of Possible Future Issues 6
References 12

Part II Nuclear Fuel Cycle Issues 15

2 Nuclear Fuel Cycle 17
2.1 Overview 17
2.2 Basic Fuel Cycle Options 18
2.3 Overview of the Twentieth-Century Nuclear Fuel Cycle 18
2.3.1 Uranium Fuel Cycle 19
2.3.1.1 Uranium Ore and Chemical Processing 19
2.3.1.2 Overview of Existing Enrichment Technologies 20
2.3.1.3 Nuclear Fuel 24
2.3.1.4 Reactor Power Production 24
2.3.1.5 Spent Fuel 25
2.3.1.6 Fuel Reprocessing 25
2.3.1.7 Radioactive Waste 29
2.3.2 Thorium Fuel Cycle 31
2.4 Twenty-First-Century Changes and Innovations 31
2.4.1 Advanced Uranium Enrichment Technologies 32
2.4.1.1 Advanced Centrifuge Technology 32
2.4.1.2 Laser Isotope Separation 33
2.4.2 Power Reactors 40
2.4.2.1 Generation III Reactors 40
2.4.2.2 Generation IV Reactors 45
2.4.2.3 Small Modular Reactors 61
2.4.2.4 Health Physics Hazards 64
2.5 Nuclear Proliferation 75
2.5.1 Advanced Centrifuge and Laser Enrichment 75
2.5.1.1 Advanced Centrifuge 76
2.5.1.2 Laser Enrichment 76
2.5.2 Reactor Plutonium Production 77
2.5.3 Fuel Reprocessing 78
2.5.4 Nuclear Forensics 80
2.5.5 Nuclear Suppliers 81
2.6 Twentieth-Century Waste Disposal Options and Solutions 81
2.6.1 Boreholes 81
2.6.2 Deep Injection 82
2.6.3 Rock Melting 82
2.6.4 Subseabed Disposal 83
2.6.5 Disposal at Sea 83
2.6.6 Disposal in Ice Sheets 83
2.6.7 Disposal in Space 84
2.6.8 Surface Storage and Shallow Land Burial 84
2.6.9 Geologic Disposal 85
2.6.10 High-Level Waste Disposal Resolution 86
2.7 Twenty-First-Century Fuel Cycle Options 86
2.7.1 Advanced Fuel Reprocessing 86
2.7.2 Partitioning and Transmutation 88
2.7.2.1 PMA Burning in Generation IV Reactors 89
2.7.2.2 Accelerator Destruction of Actinides and Fission Products 89
2.7.2.3 Gamma-Ray Free Electron Lasers 91
2.7.3 Neutron Requirements for Various Fuel Cycle Options 91
2.7.4 PAT Health Physics Considerations 92
2.7.4.1 Criticality Safety 93
2.7.4.2 Limiting Radionuclides 93
References 103

Part III Accidents and Nuclear Events 109

3 Nuclear Accidents and Radiological Emergencies 111
3.1 Overview 111
3.2 Design Considerations 111
3.2.1 Fission Product Barriers 112
3.2.1.1 Fission Product Releases 113
3.2.1.2 Fission Product Deposition 114
3.2.2 Accident Assumptions 114
3.2.3 Design Basis Assumptions 115
3.6.2.1 Stakeholder Groups 154
3.6.2.2 Stakeholders in the Decision Process 155
3.6.3 Dose Reconstruction 156
3.6.3.1 Essential Steps and Foundation Elements 156
3.6.3.2 Radiation Dose Estimation 157
3.6.3.3 Evaluation of Uncertainty 159
3.6.3.4 Categories of Dose Reconstruction 159
3.6.4 Remediation of Contaminated Areas 160
3.6.5 MARSSIM 162
3.7 Reprocessing Waste Tanks 162
3.7.1 Hanford Waste Tank Facility Background 163
3.7.2 Dominant Waste Tank Isotopes and Unit-Liter Doses 163
3.7.3 Dose Calculation Methods 164
3.7.4 Design Basis Accidents 165
3.7.4.1 Flammable Gas Accidents 166
3.7.4.2 Tank Failure Due to Excessive Loads 166
3.7.4.3 Mixing of Incompatible Materials 166
3.7.4.4 Waste Transfer Leak 166
3.7.4.5 Unplanned Excavation/Drilling 166
3.7.4.6 Natural Events 167
3.7.4.7 Aircraft Crashes into the Waste Tank 167
3.7.5 Beyond Design Basis Accidents 167
3.7.6 Accident Analysis Conservatism 167
3.8 Waste Isolation Pilot Plant Accident 169

4 Nuclear Terrorist Events Including INDs and RDDs 187
4.1 Overview 187
4.2 Nuclear Weapons Types 188
4.2.1 Fission Weapons 188
4.2.2 Boosted Fission Weapons 189
4.2.3 Fusion Weapons 189
4.2.4 Clandestine Devices 190
4.3 Nuclear Event Types 190
4.3.1 Nuclear Weapons and Improvised Nuclear Devices 191
4.3.1.1 General Properties of Nuclear Explosions 192
4.3.1.2 Initial Nuclear Radiation 196
4.3.1.3 Delayed Nuclear Radiation and Fallout 198
4.3.1.4 Implications of IND Size 202
4.3.1.5 Medical Response Activities 203
4.3.1.6 HOTSPOT 203
4.3.2 Radiological Dispersal Devices 204
4.3.3 Radiation Exposure Devices 209
4.3.4 Deliberate Contamination of Food, Water, or Other Consumables 209
4.3.5 Dispersal of Radioactive Materials from Fixed Radiological or Nuclear Facilities or Materials in Transit 210
4.3.6 Health Physics Response and Medical Consequences of a Terrorist Event 210
4.4 Accident Assumptions 211
4.4.1 Accident Phases 211
4.4.2 Emergency Planning Zones 212
4.4.3 Protective Action Recommendations 213
4.4.4 Emergency Response Actions 218
4.4.4.1 Light Damage Zone 220
4.4.4.2 Moderate Damage Zone 220
4.4.4.3 Severe Damage Zone 220
4.4.4.4 Public Information Programs and Initial Actions 221
4.4.4.5 Subsequent Emergency Response Actions 222
4.4.5 Preplanned Evacuation Zones 223
4.4.6 Reentry and Recovery Considerations 224
4.4.7 Volunteers 225
4.5 Radiation Protection Considerations 226
4.5.1 Nuclides of Interest 227
4.5.2 External Dose Considerations 228
4.5.3 Internal Dose Considerations 228
4.5.3.1 Management of Contaminated Individuals 228
4.5.3.2 Internal Dose Determination 229
4.5.4 Emergency Screening of Contaminated Individuals 237
4.5.4.1 External Contamination 237
4.5.4.2 Internal Contamination 238
4.6 Mass Casualty Considerations 240
4.7 Stakeholder Involvement 240
4.8 Contamination Remediation 241
References 253

Part IV Nuclear Medicine and Public Health 259

5 Nuclear Medicine 261
5.1 Overview 261
5.2 General Nuclear Medicine Categories 262
5.2.1 Established Imaging Approaches 262
5.2.1.1 X-Ray Imaging Radiography and Fluoroscopy 262
5.2.1.2 Diagnostic Radionuclide Administration 264
5.2.1.3 Computed Tomography 266
5.2.2 Established Therapy Applications 267
5.2.2.1 Therapeutic Radionuclide Administration 267
5.2.2.2 External Beam Therapy 268
5.2.2.3 Brachytherapy 268
5.2.2.4 Radioimmunotherapy 272
5.2.3 Targeted Delivery of Dose 272
5.2.3.1 Low-Energy Brachytherapy 273
5.2.3.2 Image-Guided Radiation Therapy 273
5.2.3.3 Intensity-Modulated Radiation Therapy 273
5.2.3.4 Stereotactic Radiosurgery and Stereotactic Body Radiotherapy 274
5.2.4 Source Security 275
5.3 Side Effects from Radiation Therapy 275
5.3.1 General Description 276
5.3.2 Second Primary Cancers and Cardiovascular Disease 276
5.3.3 Future Considerations 277
5.4 Emerging Therapy Approaches 277
5.4.1 Fundamental Physics Considerations 277
5.4.2 Dose Delivery Methods 278
5.4.3 RBE Considerations 281
5.4.4 Multimodal Therapy Options 281
5.4.5 Tracking Dose Profiles 282
5.5 Evolving, Emerging, and New Therapy Approaches 282
5.5.1 External Beam Proton Therapy 283
5.5.2 External Beam Heavy Ion Therapy 284
5.5.3 External Pion and Muon Beams 290
5.5.4 External Beam Antimatter Therapy 293
5.5.5 Alpha Radiopharmaceuticals 294
5.5.6 Neutron Therapy 295
5.5.7 Radionuclide Vascular Therapy 297
5.5.7.1 Tumor Vasculature 297
5.5.7.2 Current Radiological Efforts 297
5.5.7.3 Theoretical Approach 298
5.5.7.4 Other Candidate Microspheres 299
5.6 Nanotechnology 304
5.6.1 Principles of Nanomedicine 304
5.6.2 General Nanotechnology-Based Therapy Techniques 305
5.6.2.1 Nanotechnology Radiation Therapy 305
5.6.2.2 Nanomachines 306
5.6.2.3 Magnetic Fluid Hyperthermia Therapy 306
5.6.3 Specific Nanoparticle Applications 307
5.6.3.1 Nanoparticles Loaded with Radioactive Materials 307
5.6.3.2 Internal Radiation-Generating Devices 308
5.6.3.3 Hybrid Medical Imaging 324
5.6.3.4 Cherenkov Luminescence Imaging 326
5.6.3.5 Photodynamic Therapy 327
5.6.3.6 Low-Coherence Interferometry 327
5.6.3.7 Nonlinear Interferometric Vibrational Imaging 327
5.6.3.8 Optical Coherence Tomography 328
5.6.3.9 Personal Genomics 329
5.6.3.10 Second-Generation Nanotechnology 329
6 Public Radiation Exposures and Associated Issues 345
6.1 Overview 345
6.2 Public Radiation Exposures and Associated Effects 345
6.2.1 Ubiquitous Background Radiation 346
6.2.1.1 Cosmogenic Radionuclides 347
6.2.1.2 Primordial Radionuclides 347
6.2.1.3 Radon 347
6.2.1.4 Anthropogenic Radionuclides 347
6.2.1.5 Radiation from Space 348
6.2.1.6 Solar-Induced Disruptions and Radiation Effects 348
6.2.2 Medical Exposure 355
6.2.2.1 Trends in CT Medical Exposure 356
6.2.2.2 Mammography Doses 356
6.2.2.3 Dose from Emerging Techniques 356
6.2.3 Consumer Products and Activities 357
6.2.3.1 Source Control 359
6.2.4 Industrial, Security, Medical, Educational, and Research Activities 365
6.2.4.1 Nuclear Power Operations 365
6.2.4.2 Airport Scanners 365
6.2.5 Occupational Exposure 367
6.2.5.1 Definition of Radiation Workers 368
6.2.5.2 Aircrew Radiation Exposures 368
6.2.5.3 Morticians and Medical Examiners 369
6.3 Summary of Doses to the US Population 370
6.4 Public Dose Limits 370
6.5 Risk Communication 371
6.5.1 TMI-2 Accident 373
6.5.1.1 Enhanced Communications Organization 375
6.5.1.2 Off-Site Monitoring Network 375
6.5.2 Chernobyl 375
6.5.3 Fukushima Daiichi 376
6.6 Public Involvement in Nuclear Licensing 377
6.6.1 Emergency Response 378
6.6.2 Stakeholder Involvement 378
6.6.2.1 Incorporation of Nuclear Energy in a National Energy Plan 379
6.6.2.2 Development of Nuclear Regulation Legislation 379
6.6.2.3 Decisions to Build a Major Nuclear Facility 380
6.6.2.4 Emergency Planning Development and Implementation 380
6.6.2.5 Facility Releases of Radioactive Material 380
6.6.2.6 Environmental Restoration of Legacy Sites 381
6.6.2.7 Nuclear Facility Decontamination and Decommissioning 382