TUMOUR NECROSIS FACTOR AND RELATED CYTOTOXINS
The Ciba Foundation is an international scientific and educational charity. It was established in 1947 by the Swiss chemical and pharmaceutical company of CIBA Limited—now CIBA-GEIGY Limited. The Foundation operates independently in London under English trust law.

The Ciba Foundation exists to promote international cooperation in biological, medical and chemical research. It organizes about eight international multidisciplinary symposia each year on topics that seem ready for discussion by a small group of research workers. The papers and discussions are published in the Ciba Foundation symposium series. The Foundation also holds many shorter meetings (not published), organized by the Foundation itself or by outside scientific organizations. The staff always welcome suggestions for future meetings.

The Foundation's house at 41 Portland Place, London, W1N 4BN, provides facilities for meetings of all kinds. Its Media Resource Service supplies information to journalists on all scientific and technological topics. The library, open seven days a week to any graduate in science or medicine, also provides information on scientific meetings throughout the world and answers general enquiries on biomedical and chemical subjects. Scientists from any part of the world may stay in the house during working visits to London.
Tumour necrosis factor and related cytotoxins.

(Ciba Foundation symposium ; 131)
Editors: Gregory Bock (Organizer) and Joan Marsh.
'A Wiley-Interscience publication.'
Includes index.
QR185.8.T84T86 1987 616.99'2071 87–18975
ISBN 0 471 91097 X

Tumour necrosis factor and related cytotoxins. — (Ciba Foundation Symposium; 131).
1. Antineoplastic agents 2. Cancer cells
I. Series
616.99'4 RC270.8
ISBN 0 471 91097 X

Published in 1987 by John Wiley & Sons Ltd, Baffins Lane, Chichester, Sussex PO19 1UD, UK.

Suggested series entry for library catalogues:
Ciba Foundation Symposia

Ciba Foundation Symposium 131
× + 241 pages, 41 figures, 24 tables

Library of Congress Cataloging in Publication Data

British Library Cataloguing in Publication Data:

Typeset by Inforum Ltd, Portsmouth
Printed and bound in Great Britain
Contents

Symposium on Tumour Necrosis Factor and Related Cytotoxins, held at
the Ciba Foundation, London, 20–22 January 1987
This symposium is based on a proposal made by Professor John Playfair

Editors: Gregory Bock (Organizer) and Joan Marsh

L. J. Old Introduction 1

G. E. Gifford and D. A. Flick Natural production and release of tumour
necrosis factor 3
Discussion 14

M. A. Palladino Jr, J. S. Patton, I. S. Figari and M. R. Shalaby Possible
relationships between in vivo antitumour activity and toxicity of tumour
necrosis factor-α 21
Discussion 30

Human tumour necrosis factors: structure and receptor interactions 39
Discussion 47

C. Baglioni, V. Ruggiero, K. Latham and S. E. Johnson Cytocidal activity
of tumour necrosis factor: protection by protease inhibitors 52
Discussion 61

N. H. Ruddle, C.-B. Li, W.-L. Tang, P. W. Gray and K. M. McGrath
Lymphotoxin: cloning, regulation and mechanism of killing 64
Discussion 79

General discussion I The role of phospholipase activation in cell killing 83
Protective and cytolytic effects of tumour necrosis factor 84
K. J. Tracey, S. F. Lowry and A. Cerami Physiological responses to cachectin 88
Discussion 102

Discussion 120

J. L. Rothstein and H. Schreiber Relationship of tumour necrosis factor and endotoxin to macrophage cytotoxicity, haemorrhagic necrosis and lethal shock 124
Discussion 135

K. Haranaka, N. Satomi, A. Sakurai and R. Haranaka Antitumour effects of tumour necrosis factor: cytotoxic or necrotizing activity and its mechanism 140
Discussion 149

F. R. Balkwill, B. G. Ward and W. Fiers Effects of tumour necrosis factor on human tumour xenografts in nude mice 154
Discussion 164

J. S. Pober Effects of tumour necrosis factor and related cytokines on vascular endothelial cells 170
Discussion 179

General discussion II Lymphotoxin and tumour necrosis factor as possible mediators of an inflammatory response 185
Haemorrhagic necrosis and coagulation necrosis 187

J. H. L. Playfair and J. Taverne Antiparasitic effects of tumour necrosis factor in vivo and in vitro 192
Discussion 198

D. R. Spriggs, M. L. Sherman, E. Frei III and D. W. Kufe Clinical studies with tumour necrosis factor 206
Discussion 219

L. J. Old Summary 228

Index of contributors 233

Subject index 235
Participants

B. B. Aggarwal Department of Molecular Biology, Genentech Inc., 460 Point San Bruno Boulevard, South San Francisco, California 94080, USA

C. Baglioni Department of Biological Sciences, State University of New York at Albany, 1400 Washington Avenue, Albany, New York 12222, USA

F. R. Balkwill Imperial Cancer Research Fund Laboratories, PO Box 123, Lincoln’s Inn Fields, London WC2A 3PX, UK

N. Bloksma Vakgroep Veterinaire Farmakologie, Farmacie en Toxikologie, Rijksuniversiteit Utrecht, Biltstraat 172, 3572 BP Utrecht, The Netherlands

A. Cerami Laboratory of Medical Biochemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, USA

M. J. Crumpton Imperial Cancer Research Fund Laboratories, PO Box 123, Lincoln’s Inn Fields, London WC2A 3PX, UK

J. R. David Department of Tropical Public Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA

W. Fiers Laboratory for Molecular Biology, State University of Gent, K L Ledeganckstraat 35, B-9000 Gent, Belgium

G. E. Gifford Department of Immunology & Medical Microbiology, University of Florida College of Medicine, J. Hillis Miller Health Center, Box J-266, Gainesville, Florida 32610, USA

A. L. Goldberg Department of Physiology and Biophysics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
G. A. Granger Department of Molecular Biology and Biochemistry, University of California at Irvine, School of Biological Sciences, Irvine, California 92717, USA

K. Haranaka Department of Internal Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108, Japan

L. Hviid (Ciba Foundation Bursar) Lymphocyte Laboratory, Department of Infectious Diseases, M 7641, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen N, Denmark

D. N. Männel German Cancer Research Center, Institute for Immunology & Genetics, Postfach 101949, D-6900 Heidelberg, Federal Republic of Germany

N. Matthews Department of Medical Microbiology, University of Wales College of Medicine, University Hospital, The Heath, Cardiff CF4 4XN, UK

V. Nussenzweig Department of Pathology, New York University, NYU Medical Center, 550 First Avenue, New York, New York 10016, USA

L. J. Old (Chairman) Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA

M. A. Palladino, Jr Genentech Inc., 460 Point San Bruno Boulevard, South San Francisco, California 94080, USA

J. H. L. Playfair Department of Immunology, Middlesex Hospital Medical School, Arthur Stanley House, 40–50 Tottenham Street, London W1P 9PG, UK

J. S. Pober Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA

U. Regenass Department of Oncology, K-125, 416, CIBA-GEIGY Ltd, CH-4002 Basle, Switzerland

N. H. Ruddle Department of Epidemiology & Public Health, Yale University School of Medicine, 60 College Street, PO Box 3333, New Haven, Connecticut 06510, USA
Participants

E. Schlick Department of Oncology and Immunology, Knoll-Ag, PO Box 210805, D-6700 Ludwigshafen, Federal Republic of Germany

H. Schreiber Department of Pathology, University of Chicago, La Rabida Children's Hospital & Research Center, East 65th Street at Lake Michigan, Chicago, Illinois 60649, USA

D. R. Spriggs Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA

D. Wallach Department of Virology, The Weizmann Institute of Science, 76100 Rehovot, Israel
Introduction

L.J. OLD

Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA

1987 Tumour necrosis factor and related cytotoxins. Wiley, Chichester (Ciba Foundation Symposium 131) p 1–2

With the rapid growth of knowledge about tumour necrosis factor (TNF) and lymphotoxin (LT) over the past two years, this Ciba Foundation Symposium could not have come at a better time. Although there continues to be a preoccupation with the antitumour activities of these molecules, the role of TNF and LT in inflammation and immunity is now a focus of attention. As we view current research on inflammation, immunity and the response to infectious agents in relation to past work, we find ourselves in the middle of a revolution in our knowledge of polypeptide mediators. Whether described as growth factors, differentiation factors, interleukins or cytokines, these mediators have taken centre stage as key molecules in phenomena as diverse as immunity, sleep and neoplasia. It should be remembered that earlier claims for mediators, particularly those, like TNF, thought to be involved in the action of bacterial endotoxins, did not meet with easy acceptance. Because of the ubiquity of endotoxin and the enormous range of reactions that it elicits, the pre-polypeptide era in the study of inflammation was characterized by scepticism and disbelief in such mediators. At that time non-peptide mediators, such as histamine, serotonin and, later, the prostaglandins, leukotrienes and reactive oxygen intermediates, came to be regarded as the central molecules. With the recent recognition and cloning of so many regulatory polypeptides a new synthesis is beginning to emerge that integrates the peptide, polypeptide and non-peptide mediators in the cellular and molecular events of inflammation and immunity.

A number of themes will recur in our discussions of TNF but three deserve special mention. One is the central role of the macrophage in many of the phenomena we shall consider. This remarkable cell, which began its scientific life with the prosaic function of phagocytosis, is now known to be a veritable factory of secretory molecules. The macrophage is returning to the central place that Metchnikoff envisaged for it in the biological hierarchy. Another
theme inseparable from discussions of TNF is endotoxin, or lipopolysaccharide, a component of the outer cell wall of Gram-negative bacteria. Endotoxin is the most potent inducer of TNF yet found, and TNF clearly mediates many of its actions. In retrospect, the multiple actions of TNF should have come as no surprise, considering the extensive list of activities ascribed to endotoxin.

The third theme was quite unexpected. TNF and IL-1, another macrophage product elicited by endotoxin, do many of the same things, despite lack of sequence homology and separate receptors. Redundancy of this sort is known for molecules with limited sequence homology and a common receptor, such as TNF and LT, IFN-α and IFN-β, and IL-1α and IL-1β, but it was surprising in the case of TNF and IL-1.

Studies of TNF, LT, IL-1 and other polypeptide mediators have made it clear that these molecules are part of a complex network of interacting signals, where each mediator has a multiplicity of actions; single biological end-points, such as fever, can be elicited by structurally unrelated molecules; and complex interactions, both synergistic and antagonistic, occur between different mediators. Undoubtedly, the complexity observed with TNF and other mediators is a manifestation of Nature's preoccupation with homeostasis, wherein signal redundancy and convergent pathways from divergent signals are safer and more effective than what appear to be simpler solutions.
Natural production and release of tumour necrosis factor

George E. Gifford and David A. Flick

Department of Immunology and Medical Microbiology, University of Florida, Gainesville, Florida 32610, USA

Abstract. Tumour necrosis factor (TNF) was first described as an oncolytic factor found in sera of animals injected (primed) with reticuloendothelial stimulators and subsequently (days later) given lipopolysaccharide (LPS). TNF is not found in the serum of 'primed' animals but can be found in animals given LPS alone when sensitive assays are employed. TNF appears almost immediately upon LPS injection, reaches a maximum from about 1.5–2 hours and disappears rapidly thereafter, and is almost undetectable by 4–6 hours. When such mice are injected again with LPS, they are unresponsive (tolerized) and do not produce TNF again, at least for seven days. Other unrelated substances, such as muramyl dipeptide, viruses and mitogens, also induce TNF production. A high percentage of patients with some parasitic infections (but not cancers) demonstrate low levels of TNF in their sera; thus, they do not seem to be tolerized but produce it continuously. TNF can also be produced in macrophage cultures by treatment with LPS, muramyl dipeptide and other substances. Again, it appears almost immediately and synthesis is maintained for about 8–12 hours. Synthesis is dependent upon the continuous presence of LPS. After synthesis stops it cannot be reinitiated by adding more LPS; thus, the macrophages also appear to be tolerized. Macrophage cell lines eventually become sensitive again after cultivation in LPS-free conditions. Synthesis of TNF is inhibited by actinomycin D or cycloheximide, indicating that it is an inducible protein. Its production is also inhibited by glucocorticoids and prostaglandin E₂, indicating that these substances play important roles in the regulation of TNF synthesis.

The tumour necrotic effects of bacterial endotoxins have been known for a long time and are mediated by tumour necrosis factor (TNF) (reviewed by Ruff & Gifford 1981). TNF was discovered, described and defined at the Memorial Sloan-Kettering Cancer Center and published in a classical study by Carswell et al (1975). It was originally described as a soluble factor found in sera from animals that have been sequentially treated with a reticuloen-