New Horizons in Occultation Research
New Horizons in Occultation Research

Studies in Atmosphere and Climate
Preface

Building on its heritage in planetary science, remote sensing of the Earth’s atmosphere and ionosphere with occultation methods has undergone remarkable developments since the first GPS/Met ‘proof of concept’ mission in 1995. Signals of Global Navigation Satellite Systems (GNSS) satellites are exploited by radio occultation while natural signal sources are used in solar, lunar, and stellar occultations. A range of atmospheric variables is provided reaching from fundamental atmospheric parameters such as density, pressure, and temperature to water vapor, ozone, and other trace gas species. The utility for atmosphere and climate arises from the unique properties of self-calibration, high accuracy and vertical resolution, global coverage, and (if using radio signals) all-weather capability. Occultations have become a valuable data source for atmospheric physics and chemistry, operational meteorology, climate research as well as for space weather and planetary science.

The 3rd International Workshop on Occultations for Probing Atmosphere and Climate (OPAC-3) was held September 17–21, 2007, in Graz, Austria. OPAC-3 aimed at providing a casual forum and stimulating atmosphere for scientific discussion, co-operation initiatives, and mutual learning and support amongst members of all different occultation communities. The workshop was attended by 40 participants from 14 different countries who actively contributed to a scientific programme of high quality and to an excellent workshop atmosphere.

The programme included 6 invited keynote presentations and 16 invited presentations, complemented by about 20 contributed ones including 8 posters. It covered occultation science from occultation methodology and analysis via results of recent occultation missions and application of occultation data in atmospheric and climate science to the presentation of future occultation missions. The detailed programme and all further workshop information will continue to be available online at the OPAC-3 website at http://www.uni-graz.at/opac3.

Key challenges, as defined by the workshop participants, are to establish occultation as a future climate monitoring system demanding the demonstration of traceability to the International System of Units (SI), which is a fundamental property of a climate benchmark data type. Enhancement and validation of processing chains for the quantification of uncertainty between different retrieval methods and processing systems are further important requirements. Of high importance in this respect is the continuation of GNSS radio occultation missions with a sufficient number of
satellites as well as the conveyance of new mission concepts towards new horizons in occultation research.

This book was compiled based on selected papers presented at OPAC-3 and well represents in its five chapters the broad scope of the workshop. Occultation methodology and analysis with an overview on applications is given in chapter 1. The use of solar, lunar, and stellar occultations from SCIAMACHY and GOMOS onboard ENVISAT for atmospheric studies is described in chapter 2. Chapter 3 and chapter 4 present applications of GNSS occultation from the current missions CHAMP and Formosat-3/COSMIC for atmospheric and climate studies. The topics comprise the use of occultation data in numerical weather prediction and atmospheric wave analysis as well as in climate monitoring and change research. Upcoming occultation missions and new concepts are presented in Chapter 5.

We cordially thank all OPAC-3 colleagues, who contributed as authors and co-authors to the book, for their effort and work. All papers were subject to a peer review process, involving two independent expert reviewers per paper from the community of OPAC-3 participants and beyond. We very much thank these reviewers for their important service to ensure scientific correctness and high quality of the book. The reviewers, in alphabetical order, were S. P. Alexander, L. K. Amekudzi, C. O. Ao, G. Beyerle, C. Boone, K. Bramstedt, S. Cho, L. B. Cornman, M. Dominique, A. von Engel, U. Foelsche, J. M. Fritzer, S. Healy, S.-P. Ho, K. Hocke, N. Jakowski, Y.-H. Kuo, B. C. Lackner, F. Ladstädter, K. B. Lauritsen, S. S. Leroy, A. Löscher, J.-P. Luntama, A. G. Pavelyev, M. Petitta, D. Pingel, B. Pirscher, P. Poli, T. M. Schröder, S. Schweitzer, V. F. Sofieva, S. V. Sokolovskiy, A. K. Steiner, M. Stendel, S. Syndergaard, A. de la Torre, F. Vespe, J. Wickert, and J. J. W. Wilson.

Special thanks are due to Mrs. Helen Rachner and Mrs. Janet Sterritt-Brunner from Springer Verlag, Heidelberg, for the kind offer to issue this book as Springer publication and for the related technical support. Many thanks also to all others who provided support in one or another way, in representation of which we thank the sponsors of OPAC-3 (http://www.uni-graz.at/opac3). The Department of Science and Research of the Province of Styria is especially thanked for providing financial support enabling to cover the costs of the book.

We hope that, in the spirit of the OPAC-3 aims, the book will become a useful reference for the members of the occultation-related community but also for members of the science community at large interested in the present status and future promise of the field of occultations for probing atmosphere and climate.
Contents

Part I GNSS Occultation: Methodology, Analysis, and Applications

GPS Radio Occultation with CHAMP, GRACE-A, SAC-C, TerraSAR-X, and FORMOSAT-3/COSMIC: Brief Review of Results from GFZ 3

Error Estimate of Bending Angles in the Presence of Strong Horizontal Gradients ... 17
M.E. Gorbunov and K.B. Lauritsen

Phase Transform Algorithm for Radio Occultation Data Processing 27
J.J.W. Wilson and J.-P. Luntama

Using Airborne GNSS Receivers to Detect Atmospheric Turbulence 39
L.B. Cornman, A. Weekley, R.K. Goodrich, and R. Frehlich

The GRAS SAF Radio Occultation Processing Intercomparison Project ROPIC ... 49
A. Löscher, K.B. Lauritsen, and M. Sørensen

Radio Occultation Soundings in Ionosphere and Space
Weather Applications: Achievements and Prospects 63
J.-P. Luntama

Part II Solar, Lunar, and Stellar Occultation for Atmospheric Studies

SCIAMACHY Solar Occultation: Ozone and NO₂ Profiles 2002–2007 79
K. Bramstedt, L.K. Amekudzi, A. Rozanov, H. Bovensmann, and J.P. Burrows
Retrieval of Trace Gas Concentrations from Lunar Occultation Measurements with SCIAMACHY on ENVI SAT
L.K. Amekudzi, K. Bramstedt, A. Rozanov, H. Bovensmann, and J.P. Burrows

Validation of GOMOS/Envisat High-Resolution Temperature Profiles (HRTP) Using Spectral Analysis
V.F. Sofieva, J. Vira, F. Dalaudier, A. Hauchecorne, and the GOMOS Team

Part III GNSS Occultation for Atmospheric Studies

Assimilation of Radio Occultation Data in the Global Meteorological Model GME of the German Weather Service
D. Pingel and A. Rhodin

Sampling of the Diurnal Tide of Temperature Using Formosat-3/COSMIC Data
B. Pirscher, U. Foelsche, M. Borsche, and G. Kirchengast

Recent Advances in the Study of Stratospheric Wave Activity Using COSMIC and CHAMP GPS-RO
S.P. Alexander and T. Tsuda

Recent Advances in Gravity Wave Analysis from Long Term Global GPS Radio Occultation Observations
A. de la Torre, P. Alexander, P. Llamedo, T. Schmidt, and J. Wickert

New Applications and Advances of the GPS Radio Occultation Technology as Recovered by Analysis of the FORMOSAT-3/COSMIC and CHAMP Data-Base
A.G. Pavelyev, Y.A. Liou, J. Wickert, V.N. Gubenko, A.A. Pavelyev, and S.S. Matyugov

Part IV GNSS Occultation for Climate Studies

Climatologies Based on Radio Occultation Data from CHAMP and Formosat-3/COSMIC
U. Foelsche, B. Pirscher, M. Borsche, A.K. Steiner, G. Kirchengast, and C. Rocken

Testing Climate Models Using Infrared Spectra and GNSS Radio Occultation
S.S. Leroy, J.A. Dykema, P.J. Gero, and J.G. Anderson
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction of Consistent Temperature Records in the Lower Stratosphere Using Global Positioning System Radio Occultation Data and Microwave Sounding Measurements</td>
<td>207</td>
</tr>
<tr>
<td>Lower Stratospheric Temperatures from CHAMP RO Compared to MSU/AMSU Records: An Analysis of Error Sources</td>
<td>219</td>
</tr>
<tr>
<td>SimVis: An Interactive Visual Field Exploration Tool Applied to Climate Research</td>
<td>235</td>
</tr>
<tr>
<td>Trend Indicators of Atmospheric Climate Change Based on Global Climate Model Scenarios</td>
<td>247</td>
</tr>
<tr>
<td>Part V Future Occultation Missions</td>
<td></td>
</tr>
<tr>
<td>ROSA – The Italian Radio Occultation Mission Onboard the Indian OCEANSAT-2 Satellite</td>
<td>263</td>
</tr>
<tr>
<td>Radio Occultation Mission in Korea Multi-Purpose Satellite KOMPSAT-5</td>
<td>275</td>
</tr>
<tr>
<td>The Contribution of PROBA2-LYRA Occultations to Earth Atmosphere Composition Analysis</td>
<td>285</td>
</tr>
<tr>
<td>The Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS)</td>
<td>295</td>
</tr>
<tr>
<td>Author Index</td>
<td>315</td>
</tr>
</tbody>
</table>
Contributors

S. Albanna Steward Observatory, University of Arizona, Tucson, AZ, USA

P. Alexander Departamento de Fisica (FCEN), Universidad de Buenos Aires, Argentina

S.P. Alexander Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto, Japan

L.K. Amekudzi Institute of Environmental Physics and Remote Sensing (IUP/IFE), University of Bremen, Bremen, Germany and Department of Physics, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana

J.G. Anderson Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

C. Arras German Research Centre for Geosciences (GFZ), Potsdam, Germany

C. Benedetto Consorzio INNOVA, Matera, Italy

W. Bertiger Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

G. Beyerle German Research Centre for Geosciences (GFZ), Potsdam, Germany

M. Borsche Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

H. Bovensmann Institute of Environmental Physics and Remote Sensing (IUP/IFE), University of Bremen, Bremen, Germany

K. Bramstedt Institute of Environmental Physics and Remote Sensing (IUP/IFE), University of Bremen, Bremen, Germany

J.P. Burrows Institute of Environmental Physics and Remote Sensing (IUP/IFE), University of Bremen, Bremen, Germany

S. Casotto CISAS-Universita’ di Padova, Padova, Italy
S. Cho Korea Astronomy and Space Science Institute, Daejeon, Korea
Y. Chun Korea Aerospace Research Institute, Daejeon, Korea
J. Chung Korea Astronomy and Space Science Institute, Daejeon, Korea
L.B. Cornman National Center for Atmospheric Research, Boulder, CO, USA
F. Dalaudier Service d’Aeronomie du CNRS, Verrieres-le-Buisson CEDEX, France
V. De Cosmo Agenzia Spaziale Italiana, Rome, Italy
A. de la Torre Departamento de Fisica (FCEN), Universidad de Buenos Aires, Argentina
H. Doleisch VRVis Research Center, Vienna, Austria
M. Dominique Royal Observatory of Belgium and Belgian Institute for Space Aeronomy, Brussels, Belgium
J.A. Dykema Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
C. Falck German Research Centre for Geosciences (GFZ), Potsdam, Germany
U. Foelsche COSMIC Project Office, University Corporation for Atmospheric Research (UCAR), Boulder, CO, USA; Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria
R. Frehlich CIRES, University of Colorado, Boulder, CO, USA
D. Fussen Belgian Institute for Space Aeronomy, Brussels, Belgium
P.J. Gero Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
D. Gillotay Belgian Institute for Space Aeronomy, Brussels, Belgium
The GOMOS Team Service d’Aeronomie, France; FMI, Finland; BIRA, Belgium; ACRI-ST, France; ESA/ESRIN, Italy; ESA/ESTEC, The Netherlands
R.K. Goodrich National Center for Atmospheric Research and University of Colorado, Boulder, CO, USA
M.E. Gorbunov Institute for Atmospheric Physics, Moscow, Russia
C. Groppi Steward Observatory, University of Arizona, Tucson, AZ, USA
V.N. Gubenko Institute of Radio Engineering and Electronics of the Russian Academy of Sciences (IRE RAS), Moscow, Russia
A. Hauchecorne Service d’Aeronomie du CNRS, Verrieres-le-Buisson CEDEX, France
W. He University Corporation for Atmospheric Research (UCAR), Boulder, CO, USA and Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

S. Heise German Research Centre for Geosciences (GFZ), Potsdam, Germany

S.-P. Ho National Center for Atmospheric Research (NCAR) and University Corporation for Atmospheric Research (UCAR), Boulder, CO, USA

J.F. Hochedez Royal Observatory of Belgium, Brussels, Belgium

J. Kehrer VRVis Research Center, Vienna, Austria

G. Kirchengast Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

R. König German Research Centre for Geosciences (GFZ), Potsdam, Germany

Y.-H. Kuo National Center for Atmospheric Research (NCAR) and University Corporation for Atmospheric Research (UCAR), Boulder, CO, USA

E.R. Kursinski Institute of Atmospheric Physics, University of Arizona, Tucson, AZ, USA

B.C. Lackner Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

F. Ladständter Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

K.B. Lauritsen Danish Meteorological Institute (DMI), Copenhagen, Denmark

S. Lee Korea Aerospace Research Institute, Daejeon, Korea

S.S. Leroy Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Y.A. Liou Center for Space and Remote Sensing Research, National Central University, Taiwan

P. Llamedo Departamento de Fisica (FCEN), Universidad de Buenos Aires, Argentina

A. Löscher European Space Agency (ESA), Noordwijk, The Netherlands

J.-P. Luntama Finnish Meteorological Institute, Helsinki, Finland

M. Materassi Istituto dei Sistemi Complessi (ISC/CNR), Firenze, Italy

S.S. Matyugov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences (IRE RAS), Moscow, Russia
Contributors

G. Michalak German Research Centre for Geosciences (GFZ), Potsdam, Germany
P. Muigg VRVis Research Center, Vienna, Austria
R. Notarpietro Politecnico di Torino, Torino, Italy
A. Otarola Institute of Atmospheric Physics, University of Arizona, Tucson, AZ, USA
J. Park Korea Astronomy and Space Science Institute, Daejeon, Korea
A.A. Pavelyev Institute of Radio Engineering and Electronics of the Russian Academy of Sciences (IRE RAS), Moscow, Russia
A.G. Pavelyev Institute of Radio Engineering and Electronics of the Russian Academy of Sciences (IRE RAS), Moscow, Russia
G. Perona Istituto Superiore Mario Boella (ISMB), Torino, Italy
M. Petitta Universita “La Sapienza”, Rome, Italy
H. Pickett Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
D. Pingel Deutscher Wetterdienst (DWD), Offenbach, Germany
B. Pirscher Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria
A. Rhodin Deutscher Wetterdienst (DWD), Offenbach, Germany
C. Rocken COSMIC Project Office, University Corporation for Atmospheric Research (UCAR), Boulder, CO, USA
M. Ross The Aerospace Corporation, El Segundo, CA, USA
M. Rothacher German Research Centre for Geosciences (GFZ), Potsdam, Germany
A. Rozanov Institute of Environmental Physics and Remote sensing (IUP/IFE), University of Bremen, Bremen, Germany
T. Schmidt German Research Centre for Geosciences (GFZ), Potsdam, Germany
W. Schmutz PMOD/WRC, Davos, Switzerland
M. Shein Steward Observatory, University of Arizona, Tucson, AZ, USA
V.F. Sofieva Finnish Meteorological Institute, Earth Observation, Helsinki, Finland
M. Sørensen Danish Meteorological Institute (DMI), Copenhagen, Denmark
A. Speranza Universita’ di Camerino, Camerino, Italy
A.K. Steiner Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM), University of Graz, Austria

A. Sutera Universita “La Sapienza”, Rome, Italy

N. Tartaglione Universita’ di Camerino, Camerino, Italy

T. Tsuda Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto, Japan

F. Vanhellemont Belgian Institute for Space Aeronomy, Brussels, Belgium

F. Vespe Agenzia Spaziale Italiana-Centro di Geodesia Spaziale, Matera, Italy

J. Vira Finnish Meteorological Institute, Earth Observation, Helsinki, Finland

D. Ward Institute of Atmospheric Physics, University of Arizona, Tucson, AZ, USA

A. Weekley National Center for Atmospheric Research, Boulder, CO, USA

J. Wickert German Research Centre for Geosciences (GFZ), Potsdam, Germany

J.J.W. Wilson EUMETSAT, Darmstadt, Germany

J. Yoon Korea Aerospace Research Institute, Daejeon, Korea

A. Zin THALES-Alenia Spazio, Milano, Italy
Part I

GNSS Occultation: Methodology, Analysis, and Applications