Nitrides with Nonpolar Surfaces

Growth, Properties, and Devices

Edited by
Tanya Paskova
Nitrides with Nonpolar Surfaces

Edited by
Tanya Paskova
Related Titles

Neumark, G. F., Kuskovsky, I. L., Jiang, H. (eds.)
Wide Bandgap Light Emitting Materials and Devices
2007
ISBN: 978-3-527-40331-8

Piprek, J. (ed.)
Nitride Semiconductor Devices: Principles and Simulation
2007
ISBN: 978-3-527-40667-8

Sze, S. M., Ng, K. K.
Physics of Semiconductor Devices
2006

Adachi, S.
Properties of Group-IV, III-V and II-VI Semiconductors
2005

Ruterana, P., Albrecht, M., Neugebauer, J. (eds.)
Nitride Semiconductors: Handbook on Materials and Devices
2003
ISBN: 978-3-527-40387-5
Nitrides with Nonpolar Surfaces

Growth, Properties, and Devices

Edited by
Tanya Paskova
Contents

Preface XV

List of Contributors XIX

Color Plates XXIII

Introduction

1 Nitride Materials and Devices with Nonpolar Surfaces: Development and Prospects 3
 Tanya Paskova

 1.1 Introduction 3
 1.2 Historical Survey of Nonpolar Nitride Growth Achievements 5
 1.3 Nonpolar Nitrides Today – Key Properties and Challenges 11
 1.3.1 Morphology 11
 1.3.2 Microstructure 13
 1.3.3 Strain 14
 1.3.4 Optical Properties 18
 1.3.5 Optical Phonons 21
 1.3.6 Electrical Properties 22
 1.4 Nonpolar and Semipolar Nitride-based Devices Today 23
 1.5 Prospects in the Development of Nonpolar Nitrides and Devices 24

 1.6 Summary 25
 Acknowledgments 25
 References 26

Part I Growth

2 Growth of Planar and Reduced-defect Density Nonpolar GaN Films by Hydride Vapor Phase Epitaxy 33
 Benjamin A. Haskell, Paul T. Fini, and Shuji Nakamura

 2.1 Introduction 33
Contents

2.2 Planar a-plane GaN Growth 35
2.3 Lateral Epitaxial Overgrowth of a-plane GaN Films 39
2.4 Planar m-plane GaN Heteroepitaxy 44
2.5 Lateral Epitaxial Overgrowth of m-plane GaN 48
2.6 Conclusion 50
References 50

3 Nonpolar GaN Quasi-Wafers Sliced from Bulk GaN Crystals Grown by High-Pressure Solution and HVPE Methods 53
Izabella Grzegory, Henryk Teisseyre, Bolesław Łucznik, B. Pastuszka, Michał Bockowski, and Sylwester Porowski

3.1 Introduction 53
3.2 Bulk Crystallization of GaN 54
3.2.1 Seed Crystals 54
3.2.2 Bulk Crystallization of GaN by HVPE on Small Seeds 55
3.2.3 HVPE of GaN on Platelet-shaped Seeds 56
3.2.4 HVPE of GaN on Needle-shaped Seeds 60
3.3 Nonpolar Quantum Structures 62
3.3.1 GaN/AlGaN Quantum Structures Grown by PA Molecular Beam Epitaxy 62
3.3.2 Optical Properties of Nonpolar Structures Grown on GaN Quasi-Wafers Sliced from Bulk GaN Crystals 63
3.4 Summary 70
Acknowledgment 70
References 70

4 Heteroepitaxial Growth of Nonpolar-face AlN on SiC Substrates by Plasma-assisted Molecular-beam Epitaxy 73
Jun Suda

4.1 Introduction 73
4.2 The Crystalline Structure of AlN and SiC 75
4.3 AlN/6H-SiC (1100) 78
4.4 AlN/6H-SiC (1120) 78
4.5 AlN/4H-SiC (1120) 82
4.6 Reducing Structural Defect Densities in 4H-AlN 86
4.7 AlN/4H-SiC (1100) 92
4.8 Properties of 4H-AlN 94
4.9 Nonpolar AlGaN and AlGaN/AlN Heterostructures 95
4.10 Conclusion 96
Acknowledgments 97
References 97
5 Metalorganic Vapor Phase Epitaxial Growth of Nonpolar Al(Ga,In)N Films on Lattice-Mismatched Substrates 101
Hiroshi Amano, Takeshi Kawashima, Daisuke Iida, Masataka Imura, Motoaki Iwaya, Satoshi Kamiyama, and Isamu Akasaki

5.1 Introduction 101
5.2 Growth and Properties of \(a \)-plane GaN on \(r \)-plane Sapphire 103
5.3 Growth and Properties of \(m \)-plane GaN on \(m \)-plane SiC 106
5.4 Growth of GaN on Semipolar (30\(3\bar{8}\)) 4H-SiC Substrate 108
5.5 Reduction of Dislocation Density and Stacking-fault Density by Sidewall Seeded Epitaxial Lateral Overgrowth 108
5.6 Conductivity Control of Nonpolar GaN 112
5.6.1 \(n \)-type GaN 112
5.6.2 \(p \)-type GaN 113
5.7 Heterostructures 114
5.7.1 GaInN/GaN MQWs 114
5.7.2 AlGaN/GaN Single Heterostructure 115
5.8 Characterization of Visible LEDs on Nonpolar GaN 116
5.9 Summary 117
Acknowledgments 118
References 118
Further Reading 118

6 GaN Films and Quantum Wells with Nonpolar Surfaces: Growth and Structural Properties 119
Oliver Brandt

6.1 Introduction 119
6.2 Substrates 120
6.2.1 \(\gamma \)-LiAlO\(_2\) 120
6.2.1.1 Properties and Merits 120
6.2.1.2 Drawbacks 121
6.2.1.3 Orientation Relationship and Microstructure 121
6.2.2 \(M \)-plane 6H-SiC 122
6.2.2.1 Properties and Merits 122
6.2.2.2 Drawbacks 123
6.2.2.3 Orientation Relationship and Microstructure 123
6.3 Optimization of the Heteroepitaxy of GaN Films on \(\gamma \)-LiAlO\(_2\)(100) 124
6.3.1 Substrate Preparation and Impact of Polarity 124
6.3.2 Impact of Nucleation Conditions on Phase Purity 126
6.3.2.1 Growth 126
6.3.2.2 RHEED 127
6.3.2.3 XRD 127
6.3.2.4 Impact of Nucleation Conditions on Phase Purity 127
Contents

6.3.3 Influence of Nucleation Temperature on Surface Quality 129
 6.3.3.1 Roughness versus T_N 129
 6.3.3.2 TEM 130
6.4 Ga Adsorption and Desorption Kinetics 131
 6.4.1 Surface Reconstruction 131
 6.4.1.1 Relation between Ga Coverage and Surface Reconstructions 131
 6.4.2 Ga Adsorption/Desorption Kinetics 133
6.5 M-plane (In,Ga)N/GaN MQWs 139
 6.5.1 In Incorporation and Surface Segregation 139
 6.5.1.1 Growth 140
 6.5.1.2 HRXRD 140
 6.5.1.3 SIMS 142
 6.5.2 Recombination Mechanism 143
 6.5.2.1 cw-PL 143
 6.5.2.2 Anomalous Temperature-dependent PL Width 144
 6.5.2.3 PL Transition Energy as a Function of Well Thickness 145
 6.5.2.4 Recombination Dynamics 146
6.6 Conclusion and Outlook 149
Acknowledgments 150
References 150

Part II Properties

7 GaN Films and (In,Ga)N/GaN Multiple Quantum Wells with Nonpolar Surfaces: Optical Polarization Properties 155
 Holger Grahn
 7.1 Introduction 155
 7.2 Experimental Details 157
 7.3 The Effect of Strain on the Exciton Transition Energies and Oscillator Strengths 159
 7.3.1 Unstrained GaN with Polar and Nonpolar Orientations 159
 7.3.2 Strain Dependence for Polar Orientations of GaN 162
 7.3.3 Strain Dependence for Nonpolar Orientations of GaN 163
 7.4 Optical Polarization Anisotropy in GaN Films and (In,Ga)N/GaN Multiple Quantum Wells 165
 7.4.1 Strained GaN Films with Different Nonpolar Orientations 165
 7.4.2 Polarized Photoluminescence Spectroscopy of M-plane GaN Films 169
 7.4.3 Polarized Photoluminescence Spectroscopy of M-plane (In,Ga)N/GaN Multiple Quantum Wells 172
 7.5 Applications of Optical Polarization Anisotropy 175
 7.5.1 Static and Dynamic Polarization Filtering 175
 7.5.2 Polarization-sensitive Photodetectors 176
Contents

7.5.3 Very Narrow-band Photodetectors 178
7.5.4 Polarized Light Emitters 180
7.6 Summary 181
Acknowledgments 182
References 182

8 Luminescence of GaN Layers Grown in Nonpolar Directions 185
Plamen P. Paskov and Bo Monemar

8.1 Introduction 185
8.2 Luminescence in GaN Layers Grown along the [0001] Direction (c-Plane Layers) 186
8.3 Luminescence in GaN Layers Grown along the [11̅20] Direction (a-Plane Layers) 189
8.3.1 a-Plane GaN Layers Grown on r-Plane Sapphire 189
8.3.2 a-Plane GaN Layers Grown on a-Plane SiC 203
8.4 Luminescence in GaN Grown along the [1̅100] Direction (m-Plane Layers) 204
8.4.1 m-Plane GaN Layers Grown on γ-LiAlO₂ 204
8.4.2 m-Plane GaN Layers Grown on m-Plane SiC 207
8.5 Luminescence in GaN Layers Grown along Semipolar Directions 209
8.6 Luminescence in GaN with Nonpolar Surfaces Sliced from Boules Grown along the c Axis 211
8.7 Summary 212
Acknowledgments 213
References 214

9 Optical Phonons in a-plane GaN under Anisotropic Strain 219
Vanya Darakchieva, Tanya Paskova, and Mathias Schubert

9.1 Introduction 219
9.2 Background 221
9.2.1 Structure of Wurtzite GaN 221
9.2.2 Phonons in Wurtzite GaN 222
9.2.3 Lattice Deformation and Strain 223
9.2.3.1 Biaxial Isotropic Strain in GaN 224
9.2.3.2 Anisotropic Strain in GaN 225
9.2.4 Phonon Deformation Potentials 226
9.2.5 Raman Scattering Spectroscopy 226
9.2.6 Infrared Spectroscopic Ellipsometry 229
9.2.6.1 Standard Ellipsometry 230
9.2.6.2 Generalized Ellipsometry 231
9.2.6.3 Ellipsometry Data Analysis 231
9.3 Anisotropic Strain in a-plane GaN 234
10 Defects Formed in Nonpolar GaN Grown on SiC and Al₂O₃ and their Reduction in Pendeo-epitaxial and Laterally Overgrown GaN Layers 255
Zuzanna Liliental-Weber and Dmitri Nikdaj Zakharov

10.1 Introduction 255
10.2 Defects Formed in Nonpolar (11\overline{2}0) a-plane GaN Grown on (11\overline{2}0) 4H-SiC 256
10.2.1 Growth Procedure 256
10.2.2 Defect Characterization 257
10.2.3 Why Planar Defects are Formed in the Layers Grown on Nonpolar Surfaces 265
10.3 Defect Reduction 269
10.3.1 Growth of Thick Layers 269
10.3.2 Lateral Overgrowth 270
10.3.3 Pendeo-epitaxial Layers 273
10.4 Application of Pendeo-epitaxy for the Layers Grown on Nonpolar Substrates 274
10.5 Application of Lateral Overgrowth for a-plane GaN Layers Grown on the r plane of Al₂O₃ 278
10.6 Summary 283
Acknowledgments 284
References 284

11 Defects and Interfacial Structure of a-plane GaN on r-plane Sapphire 287
Roland Kröger

11.1 Introduction 287
11.1.1 Conventions 288
11.1.2 Lattice Mismatch 289
11.2 Defects in a-plane GaN on r-plane Sapphire 291
11.2.1 Point Defects and Impurities 291
11.2.1.1 Point Defects 292
11.2.1.2 Impurities 293
11.2.2 Dislocations 294
11.2.2.1 Dislocation Types in a-GaN 297
11.2.2.2 Dislocation Formation Energy 298
11.2.2.3 Impact of Anisotropy 299
11.2.3 Planar Defects 301
11.2.3.1 Basal Plane Stacking Faults 302
11.2.3.2 Analysis of Basal Plane Stacking Faults 303
11.2.3.3 Prismatic and Pyramidal Stacking Faults 304
11.2.4 Volume Defects 307
11.2.4.1 Nanopipes 307
11.2.4.2 Voids 308
11.2.5 Surface Defects 308
11.3 Interfacial Structure 309
11.3.1 Epitaxial Relationship 309
11.3.2 Interfacial Structure 310
11.3.2.1 HRTEM along the $[\bar{1}100]_{\text{GaN}}$ Zone Axis 311
11.3.2.2 HRTEM along the $[0001]_{\text{GaN}}$ Zone Axis 312
11.3.3 Model of Interfacial Structure 313
11.4 Summary 315
Acknowledgments 316
References 316
Further Reading 318

Part III Nonpolar Heterostructures and Devices

12 Nonpolar Nitride Heterostructures and Devices grown by MOCVD 321
 Arpan Chakraborty, Shigefusa Chichibu, and Umesh Mishra
12.1 Introduction 321
12.2 Nonpolar InGaN/GaN Multiple-quantum Wells 322
12.2.1 Growth and Properties of a-Plane InGaN/GaN MQWs 322
12.2.1.1 Experiment 322
12.2.1.2 Results 323
12.2.1.3 Summary 330
12.2.2 Growth and Properties of m-Plane InGaN/GaN MQWs 330
12.2.2.1 Experiment 330
12.2.2.2 Results 331
12.2.2.3 Summary 336
12.3 Nonpolar Light-emitting Diodes 336
12.3.1 Introduction and Background 336
12.3.2 Growth and Characterization of α-Plane InGaN/GaN LEDs 337
12.3.2.1 Experiment 337
12.3.2.2 Results 338
12.3.2.3 Wavelength Shift in Nonpolar α-Plane LEDs 342
12.3.3 Growth and Characterization of m-plane InGaN/GaN LEDs 343
12.3.3.1 Experiments 343
12.3.3.2 Results 344
12.3.3.3 DC and Pulsed Performance of m-plane Packaged LED Lamps 347
12.3.3.4 Transmission Through Free-standing m-plane Substrate 349
12.3.4 Comparison of Power Performance of α-plane and m-plane LEDs 350
12.4 Polarized Light Emission 352
12.5 Recent Nonpolar Optical Device Results Overview 352
12.6 Conclusions 353
Acknowledgements 354
References 354

13 Growth, Structural, and Optical Properties of α-plane GaN Quantum Dots in AlN 357
Sebastien Founta, Fabian Rol, Bruno Gayral, and Bruno Daudin
13.1 Introduction 357
13.2 Epitaxial Growth of Nonpolar Nitride Layers 358
13.2.1 Substrates and Growth Conditions 358
13.2.2 Anisotropy of MBE-grown AlN α-plane Surface 359
13.3 Growth of Nonpolar GaN QDs 360
13.3.1 Impact of Growth Parameters: Nominal GaN Quantity 360
13.3.2 Morphology of α-plane GaN QDs 362
13.3.3 Strain State of α-plane GaN QDs 365
13.4 Optical Properties of (11-20) GaN QDs 371
13.4.1 Optical Spectroscopy on Ensembles of QDs 371
13.4.2 Single QD Spectroscopy 374
13.4.3 Radiative Decay Time Analysis 380
13.5 Conclusion 382
Acknowledgments 382
References 383
14 **Semipolar InGaN/GaN Quantum Wells for Highly Functional Light Emitters** 385
Mitsuru Funato, Yoichi Kawakami, Yukio Narukawa, and Takashi Mukai

14.1 Introduction 385
14.2 Semipolar \{11\bar{2}2\} Planes 387
14.3 Microfacet QWs 388
14.3.1 Fabrication and Fundamental Properties of Microfacet QWs 388
14.3.2 Emission Properties of \{11\bar{2}2\} Microfacet QWs 392
14.3.3 Multicolor Emission Toward Tailor-made Solid-state Lighting 395
14.3.3.1 Multicolor Emission Based on Intra-facet Variations of the In Composition 395
14.3.3.2 Multicolor Emission based on Inter-facet Variations of the QW Structures 398
14.4 Planar QWs and LEDs 400
14.4.1 MOVPE Growth and Fundamental Properties of GaN and In-GaN/GaN QWs 401
14.4.2 Semipolar LEDs 405
14.5 Summary 409
Acknowledgments 409
References 410

Index 413