Edited by
János Fischer and
Wayne E. Childers

Successful Drug Discovery
Advisory Board Members

Magid Abou-Gharbia
(Temple University, USA)

Anette Graven Sams
(Lundbeck, Denmark)

Kazumi Kondo
(Otsuka, Japan)

John A. Lowe
(JL3Pharma LLC, USA)

Barry V.L. Potter
(Oxford University, UK)

Part Editors

Helmut Buschmann
(Aachen, Germany)

A. Ganesan
(University of East Anglia, Norwich, UK)

Juan-Miguel Jimenez
(Vertex Pharmaceuticals, UK)

Stefan Laufer
(University of Tübingen, Germany)

John Proudfoot
(Boehringer Ingelheim, Ridgefield, USA)

Jörg Senn-Bilfinger
(Konstanz, Germany)
Contents

Preface XIII

List of Contributors XVII

Part I HDAC Inhibitor Anticancer Drug Discovery 1

1 From DMSO to the Anticancer Compound SAHA, an Unusual Intellectual Pathway for Drug Design 3
 Ronald Breslow
 1.1 Introduction 3
 1.2 The Discovery of SAHA (vorinostat) 4
 1.3 Clinical Trials 7
 1.4 Follow-On Research – Selective HDAC Inhibitors 8
 1.5 Conclusion 9
 References 9

2 Romidepsin and the Zinc-Binding Thiol Family of Natural Product HDAC Inhibitors 13
 A. Ganesan
 2.1 Histone Deacetylases as a Therapeutic Target 13
 2.2 The Discovery and Development of Romidepsin 15
 2.3 The Zinc-Binding Thiol Family of Natural Product HDAC Inhibitors 18
 2.4 Synthetic Analogues of the Zinc-Binding Thiol Natural Products 21
 2.5 Summary 23
 References 24

3 The Discovery and Development of Belinostat 31
 Paul W. Finn, Einars Loza and Elisabeth Carstensen
 3.1 Introduction 31
 3.2 Discovery of Belinostat 32
 3.2.1 Design Strategy 32
 3.2.2 Medicinal Chemistry and SAR 34
3.3 Belinostat Biological Profiling 41
 3.3.1 Mode of Action and HDAC Isoform Selectivity 41
 3.3.2 Antiproliferative and Antitumor Activity 42
3.4 Formulation Development 44
3.5 Clinical Development 45
 3.5.1 Clinical Studies Leading to Approval and Other Clinical Investigations 45
 3.5.2 Pharmacokinetics 49
 3.5.3 Safety and Tolerability 51
3.6 Conclusions 52
References 53

4 Discovery and Development of Farydak (NVP-LBH589, Panobinostat) as an Anticancer Drug 59
 Peter Atadja and Lawrence Perez
 4.1 Target Identification: From p21Waf1 Induction to HDAC Inhibition 59
 4.2 Program Flowchart Assays for Drug Discovery 61
 4.3 Hit-To-Lead Campaign: Trichostatin A to LAK974 63
 4.4 Lead Optimization: LAK974 to LAQ824 64
 4.5 Profiling LAQ824 for Cancer Therapy 66
 4.6 Preclinical Development of LAQ824 70
 4.7 LAQ824 Follow-Up 72
 4.8 Discovery of LBH589 73
 4.9 Safety Profile for LBH589 74
 4.10 Pan-HDAC Inhibition by LBH589 76
 4.11 Cancer Cell-Specific Cytotoxicity of LBH589 76
 4.11.1 Toxicity and Safety Studies with LBH589 78
 4.11.2 Early Clinical Activity of LBH589 in CTCL 78
 4.11.3 Large-Scale Cell Line Profiling to Discover Lineage-Specific LBH589-Sensitive Cancer Indications 79
 4.11.4 Clinical Profiling of Heme Malignancies for LBH589 Activity 80
 4.11.5 Phase II Study of Oral Panobinostat in Hodgkin Lymphoma 81
 4.11.6 Phase IB Clinical Studies in Multiple Myeloma 82
 4.11.7 Phase III Registration Study in Relapsed or Refractory Myeloma 82
 4.11.8 Conclusion and Future Perspective 83
References 85

5 Discovery and Development of HDAC Subtype Selective Inhibitor Chidamide: Potential Immunomodulatory Activity Against Cancers 89
 Xian-Ping Lu, Zhi-Qiang Ning, Zhi-Bin Li, De-Si Pan, Song Shan, Xia Guo, Hai-Xiang Cao, Jin-Di Yu and Qian-Jiao Yang
 5.1 Introduction 89
 5.1.1 Epigenetics and Cancer 89
 5.1.2 Epigenetic Drugs 90
 5.2 Discovery of Chidamide 93
Part II Steroidal CYP17 Inhibitor Anticancer Drug Discovery 115

6 Abiraterone Acetate (Zytiga): An Inhibitor of CYP17 as a Therapeutic for Castration-Resistant Prostate Cancer 117
 Gabriel M. Belfort, Boyd L. Harrison and Gabriel Martinez Botella
 6.1 Introduction 117
 6.2 Discovery and Structure–Activity Relationships (SAR) 119
 6.3 Preclinical Characterisation of Abiraterone and Abiraterone Acetate 126
 6.3.1 Pharmacology 126
 6.3.2 Pharmacokinetics 127
 6.3.3 Toxicology 128
 6.4 Physical Characterisation 129
 6.5 Clinical Studies 129
 6.6 Conclusion 132
 References 133

Part III Anti-Infective Drug Discoveries 137

7 Discovery of Delamanid for the Treatment of Multidrug-Resistant Pulmonary Tuberculosis 139
 Hidetsugu Tsubouchi, Hirofumi Sasaki, Hiroshi Ishikawa and Makoto Matsumoto
 7.1 Introduction 139
7.2 Synthesis Strategy 140
7.3 Synthesis Route 142
7.4 Screening Evaluations 145
7.4.1 Screening Procedure 145
7.4.2 Screening Results 146
7.4.3 Selection of a Compound Candidate for Preclinical Tests 151
7.5 Preclinical Data of Delamanid 151
7.5.1 Antituberculosis Activity 151
7.5.2 Mechanism of Action 153
7.5.3 Pharmacokinetics 153
7.5.4 Genotoxicity and Carcinogenicity 154
7.5.5 Preclinical Therapeutic Efficacy 154
7.6 Clinical Data of Delamanid 155
7.6.1 Clinical Pharmacokinetics 155
7.6.2 Drug–Drug Interactions 156
7.6.3 Cardiovascular Safety 156
7.6.4 Clinical Therapeutic Efficacy 156
7.6.5 Other Clinical Trials 157
7.7 Future Priorities and Conclusion 158
References 159

8 Sofosbuvir: The Discovery of a Curative Therapy for the Treatment of Hepatitis C Virus 163
Michael J. Sofia
8.1 Introduction 163
8.2 Discussion 165
8.2.1 Target Rationale: HCV NS5B RNA-Dependent RNA Polymerase 165
8.2.2 Rationale and Design of a Liver Targeted Nucleotide Prodrug 168
8.2.3 Prodrug Optimization and Preclinical Evaluation 171
8.2.4 Prodrug Metabolism 175
8.2.5 Clinical Proof of Concept of a Liver Targeted Nucleotide Prodrug 176
8.2.6 The Single Diastereomer: Sofosbuvir 176
8.2.7 Sofosbuvir Preclinical Profile 177
8.2.8 Sofosbuvir Clinical Studies 179
8.2.9 Viral Resistance 182
8.3 Conclusion 183
References 184
Part IV Central Nervous System (CNS) Drug Discovery 189

9 The Discovery of the Antidepressant Vortioxetine and the Research that Uncovered Its Potential to Treat the Cognitive Dysfunction Associated with Depression 191
 Benny Bang-Andersen, Christina Kurre Olsen and Connie Sanchéz
 9.1 Introduction 191
 9.2 The Discovery of Vortioxetine 192
 9.3 Clinical Development of Vortioxetine for the Treatment of MDD 200
 9.4 Uncovering Vortioxetine’s Potential to Treat Cognitive Dysfunction in Patients with MDD 201
 9.4.1 Early Preclinical Evidence that Differentiated Vortioxetine from Other Antidepressants 201
 9.4.2 Vortioxetine’s Primary Targets and Their Putative Impact on Cognitive Function – Early Preclinical Data 202
 9.4.3 Hypothesis-Generating Clinical Study of Vortioxetine’s Effects on Cognitive Symptoms in Elderly Patients with MDD 203
 9.4.4 Substantiation of a Mechanistic Rationale for the Procognitive Effects of Vortioxetine in Preclinical Models and Its Differentiation from SSRIs and SNRIs 204
 9.4.5 Confirmation of the Cognitive Benefits of Vortioxetine in Two Large Placebo-Controlled Studies in Adults with MDD 205
 9.4.6 Additional Translational Evidence of the Effect of Vortioxetine on Brain Activity During Cognitive Performance 208
 9.5 Conclusion 208
 References 210

Part V Antiulcer Drug Discovery 215

10 Discovery of Vonoprazan Fumarate (TAK-438) as a Novel, Potent and Long-Lasting Potassium-Competitive Acid Blocker 217
 Haruyuki Nishida
 10.1 Introduction 217
 10.2 Limitations of PPIs and the Possibility of P-CABs 218
 10.3 Exploration of Seed Compounds 220
 10.4 Lead Generation from HTS Hit Compound 1 220
 10.5 Analysis of SAR and Structure–Toxicity Relationship for Lead Optimization 223
 10.6 Selection of Vonoprazan Fumarate (TAK-438) as a Candidate Compound 224
 10.7 Preclinical Study of TAK-438 226
 10.8 Clinical Study of TAK-438 228
 10.9 Discussion 229
 10.10 Conclusion 230
 References 232
Part VI Cross-Therapeutic Drug Discovery
(Respiratory Diseases/Anticancer) 235

11 Discovery and Development of Nintedanib: A Novel Antiangiogenic and Antifibrotic Agent 237
Gerald J. Roth, Rudolf Binder, Florian Colbatzky, Claudia Dallinger, Rozsa Schlenker-Herceg, Frank Hilberg, Lutz Wollin, John Park, Alexander Pautsch and Rolf Kaiser

11.1 Introduction 237
11.2 Structure–Activity Relationships of Oxindole Kinase Inhibitors and the Discovery of Nintedanib 238
11.3 Structural Research 244
11.4 Preclinical Pharmacodynamic Exploration 246
11.4.1 Kinase Inhibition Profile of Nintedanib 246
11.4.2 Oncology, Disease Pathogenesis and Mechanism of Action 246
11.4.3 Idiopathic Pulmonary Fibrosis, Disease Pathogenesis and Mechanism of Action 249
11.5 Nonclinical Drug Metabolism and Pharmacokinetics 250
11.6 Clinical Pharmacokinetics 251
11.7 Toxicology 252
11.8 Phase III Clinical Data 253
11.8.1 Efficacy and Safety of Nintedanib in IPF 253
11.8.2 Efficacy and Safety of Nintedanib in NSCLC 255
11.9 Other Oncology Studies 256
11.10 Conclusions 257

References 258

Index 267
Preface

The first volume of Successful Drug Discovery has been well received and the International Union of Pure and Applied Chemistry (IUPAC) supported its continuation.

The main goal of this book series is to help experts of drug research and development both in academia and industry with case histories described by their key inventors or recognised experts whose contributions can also serve as teaching examples.

This year marks the tenth anniversary of the approval of vorinostat, the first marketed histone deacetylase inhibitor (HDAC). This event inaugurated a stream of HDAC inhibitor approvals and confirmed the validity of this drug target and of epigenetic modulation as a viable therapeutic mechanism. To celebrate this important milestone the volume presents a number of HDAC inhibitor drug discovery stories.

The editors of the second volume focused on the following six parts:

I. HDAC Inhibitor Anticancer Drug Discovery

Part Editor: A. Ganesan (University of East Anglia, Norwich, UK)

1. Vorinostat
 Ronald Breslow (Columbia University, USA) describes the discovery of vorinostat, which is a pioneer HDAC inhibitor whose discovery started from dimethylsulfoxide as a lead molecule.

2. Romidepsin
 A. Ganesan (University of East Anglia, UK) gives an overview of the discovery of romidepsin, a depsipeptide natural product. High-throughput screening led to an anticancer drug that proved to be a potent inhibitor of class I HDACs.

3. Belinostat
 Paul W. Finn and coworkers (University of Buckingham, UK) report on belinostat, which is a potent pan-inhibitor of class I and II HDACs. It was approved in 2014 for the treatment of peripheral T-cell lymphoma.

4. Panobinostat
 Peter Atadja and coworker (Novartis Institute for Biomedical Research, US & China) present the story of how a functional high-