Science of Synthesis

Compounds with Four and Three Carbon—Heteroatom Bonds

Volume Editor
A. B. Charette

Editorial Board
D. Bellus
E. N. Jacobsen
S. V. Ley
R. Noyori
M. Regitz
P. J. Reid
E. Schaumann
I. Shinkai
E. J. Thomas
B. M. Trost

Three Carbon—Heteroatom Bonds: Thio-, Seleno-, and Tellurocarboxylic Acids and Derivatives; Imidic Acids and Derivatives; Ortho Acid Derivatives
Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:
- Methods critically evaluated by leading scientists
- Background information and detailed experimental procedures
- Schemes and tables which illustrate the reaction scope
Compounds with Four and Three Carbon–Heteroatom Bonds

Three Carbon–Heteroatom Bonds: Thio-, Seleno-, and Tellurocarboxylic Acids and Derivatives; Imidic Acids and Derivatives; Ortho Acid Derivatives

Volume Editor
A. B. Charette

Responsible Member of the Editorial Board
E. J. Thomas

Authors
V. K. Aggarwal H. Lebel
R. A. Aitken T. Murai
A. B. Charette N. Nakajima
S. Cicchi K. Ostrowska
F. M. Cordero G. K. S. Prakash
R. S. Glass J. Richardson
M. Grenon M. Ubukata
J. Hu C. L. Winn
W. Kantlehner T. Wirth
A. Kolasa

2005
Georg Thieme Verlag
Stuttgart · New York

Includes bibliographical references and index.

QD262 .S35 2000
547'.2–dc21
00-061560

[Houben–Weyl methods of organic chemistry]

British Library Cataloguing in Publication Data

1. Organic compounds – Synthesis 2. Organic compounds – Laboratory manuals

1. Charette, A. B., II. Aggarwal, V. K.

547.2

ISBN 3-13-118731-X

(Thieme New York)

Date of publication: June 15, 2005

Copyright and all related rights reserved, especially the right of copying and distribution, multiplication and reproduction, as well as of translation. No part of this publication may be reproduced by any process, whether by photostat or microfilm or any other procedure, without previous written consent by the publisher. This also includes the use of electronic media of data processing or reproduction of any kind.

This reference work mentions numerous commercial and proprietary trade names, registered trademarks and the like (not necessarily marked as such), patents, production and manufacturing procedures, registered designs, and designations. The editors and publishers wish to point out very clearly that the present legal situation in respect of these names or designations or trademarks must be carefully examined before making any commercial use of the same. Industrially produced apparatus and equipment are included to a necessarily restricted extent only and any exclusion of products not mentioned in this reference work does not imply that any such selection of exclusion has been based on quality criteria or quality considerations.

Warning! Read carefully the following: Although this reference work has been written by experts, the user must be advised that the handling of chemicals, microorganisms, and chemical apparatus carries potentially life-threatening risks. For example, serious dangers could occur through quantities being incorrectly given. The authors took the utmost care that the quantities and experimental details described herein reflected the current state of the art of science when the work was published. However, the authors, editors, and publishers take no responsibility as to the correctness of the content. Further, scientific knowledge is constantly changing. As new information becomes available, the user must consult it. Although the authors, publishers, and editors took great care in publishing this work, it is possible that typographical errors exist, including errors in the formulas given herein. Therefore, it is imperative that and the responsibility of every user to carefully check whether quantities, experimental details, or other information given herein are correct based on the user's own understanding as a scientist. Scale-up of experimental procedures published in Science of Synthesis carries additional risks. In cases of doubt, the user is strongly advised to seek the opinion of an expert in the field, the publishers, the editors, or the authors. When using the information described herein, the user is ultimately responsible for his or her own actions, as well as the actions of subordinates and assistants, and the consequences arising therefrom.
Preface

As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work Houben–Weyl Methods of Organic Chemistry will be published starting in the year 2000.

To reflect the new broader need and focus, this new edition has a new title, Science of Synthesis, Houben–Weyl Methods of Molecular Transformations. Science of Synthesis will benefit from more than 90 years of experience and will continue the tradition of excellence in publishing synthetic chemistry reference works. Science of Synthesis will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of Science of Synthesis will provide chemists with the most reliable methods to solve their synthesis problems. Science of Synthesis will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make Science of Synthesis the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

The Editorial Board

D. Bellus (Basel, Switzerland) P. J. Reider (New Jersey, USA)
E. N. Jacobsen (Cambridge, USA) E. Schaumann (Clausthal-Zellerfeld, Germany)
S. V. Ley (Cambridge, UK) I. Shinkai (Tsukuba, Japan)
R. Noyori (Nagoya, Japan) E. J. Thomas (Manchester, UK)
M. Regitz (Kaiserslautern, Germany) B. M. Trost (Stanford, USA)

October 2000
Volume 22: Three Carbon–Heteroatom Bonds: Thio-, Seleno-, and Tellurocarboxylic Acids and Derivatives; Imidic Acids and Derivatives; Ortho Acid Derivatives

Preface

Table of Contents

Introduction
André B. Charette

Product Class 1: Thiocarboxylic Acids and Derivatives

Product Subclass 1: α-Substituted Sulfur Ylides
V. K. Aggarwal, J. Richardson, and C. L. Winn

Product Subclass 2: Thioacyl Halides
R. S. Glass

Product Subclass 3: Thioarboxylic O-Acid Esters
R. S. Glass

Product Subclass 4: Dithioarboxylic Acid Esters
R. S. Glass

Product Subclass 5: Selenothioarboxylic Se-Acid Esters
R. S. Glass

Product Subclass 6: Tellurothioarboxylic Te-Acid Esters
R. S. Glass

Product Subclass 7: Thioamides
H. Lebel

Product Class 2: Selenocarboxylic Acids and Derivatives
T. Wirth

Product Class 3: Tellurocarboxylic Acids and Derivatives
T. Murai

Product Class 4: Imidic Acids and Derivatives

Product Subclass 1: Carbon-Substituted Iminium Salts
S. Cicchi and F. M. Cordero

Product Subclass 2: C-Heteroatom-Substituted Nitrones, Other Dipoles
F. M. Cordero and S. Cicchi

Product Subclass 3: Imidoyl (Imino) Halides
N. Nakajima and M. Ubukata

Product Subclass 4: Imidates
N. Nakajima and M. Ubukata
| 22.4.5 | **Product Subclass 5: Thioimidates and Their Derivatives**
| N. Nakajima and M. Ubukata | 361 |
| 22.4.6 | **Product Subclass 6: Selenoimidates (Imidoselenoates) and Derivatives**
| N. Nakajima and M. Ubukata | 367 |
| 22.4.7 | **Product Subclass 7: Telluroimidates (Imidotelluroates) and Derivatives**
| N. Nakajima and M. Ubukata | 375 |
| 22.4.8 | **Product Subclass 8: N-Alkyl-, N-Aryl-, and N-Hetaryl-Substituted Amidines (Imidamides)**
| K. Ostrowska and A. Kolas | 379 |
| 22.4.9 | **Product Subclass 9: Amidines (Imidamides) N-Substituted by Metals, Halogens, Oxygen, and Other Heteroatoms**
| K. Ostrowska and A. Kolas | 489 |
| 22.5 | **Product Class 5: 2-Functionalized Alkylidene phosphines**
| R. A. Aitken | 565 |
| 22.6 | **Product Class 6: 2-Functionalized Arsaalkenes and α-Functionalized Arsonium Ylides**
| R. A. Aitken | 601 |
| 22.7 | **Product Class 7: Ortho Acid Derivatives**
| 22.7.1 | **Product Subclass 1: Trihalomethyl Compounds**
| G. K. S. Prakash and J. Hu | 617 |
| 22.7.2 | **Product Subclass 2: Ortho Esters and Halogenated Derivatives**
| H. Lebel and M. Grenon | 669 |
| 22.7.3 | **Product Subclass 3: Trithioortho Esters and Halogenated Derivatives**
| H. Lebel and M. Grenon | 749 |
| 22.7.4 | **Product Subclass 4: Triselenoortho Esters and Halogenated Derivatives**
| H. Lebel and M. Grenon | 775 |
| 22.7.5 | **Product Subclass 5: Tritelluroortho Esters and Halogenated Derivatives**
| H. Lebel and M. Grenon | 789 |
| 22.7.6 | **Product Subclass 6: Ortho Amides (Alkane-1,1,1-triamines)**
| W. Kantlehner | 795 |
| 22.7.7 | **Product Subclass 7: Tris(diorganophosphino)methanes and Derivatives**
| W. Kantlehner | 843 |

Keyword Index
Author Index
Abbreviations
Table of Contents

22 Introduction
André B. Charette

22 Introduction .. 1

22.1 Product Class 1: Thiocarboxylic Acids and Derivatives

22.1.1 Product Subclass 1: α-Substituted Sulfur Ylides
V. K. Aggarwal, J. Richardson, and C. L. Winn

22.1.1 Product Subclass 1: α-Substituted Sulfur Ylides .. 11
22.1.1.1 Synthesis of Product Subclass 1 .. 13
22.1.1.1 Silicon-, Tin-, and Germanium-Substituted Sulfur Ylides 13
22.1.1.1.1 Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts 14
22.1.1.1.2 Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides .. 15
22.1.1.1.2 Variation 1: Hydrogen Atom Substitution Using Chloro(methyl)silanes, -germanes, and -stannanes .. 15
22.1.1.1.3 Method 3: Synthesis from Carbenes .. 16
22.1.1.1.3.1 Variation 1: Transition-Metal-Catalyzed Decomposition of Diazo Compounds .. 17
22.1.1.1.4 Method 4: 1,3-Elimination Reactions .. 18
22.1.1.1.4.1 Variation 1: Thermolysis of [Bromo(trimethylsilyl)methyl][Trimethylsilyl]methyl Sulfides .. 18
22.1.1.1.5 Method 5: Modification of Existing Ylides .. 18
22.1.1.1.2 Halogen-Substituted Sulfur Ylides .. 19
22.1.1.1.2.1 Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts 19
22.1.1.1.2.2 Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides .. 21
22.1.1.1.2.1 Variation 1: Replacement with a Halogen Atom 21
22.1.1.1.2.2 Variation 2: Replacement with Other Functional Groups 21
22.1.1.1.2.3 Method 3: Synthesis from Carbenes .. 22
22.1.1.1.2.3.1 Variation 1: By Reaction with Dihalocarbenes 22
22.1.1.1.2.3.2 Variation 2: From Monohalocarbenes ... 25
22.1.1.1.3 Oxygen-Substituted Sulfur Ylides ... 25
22.1.1.1.4 Sulfur-Substituted Sulfur Ylides .. 26
22.1.1.1.4.1 Method 1: Deprotonation of Sulfonium and Sulfoxonium Salts 26
22.1.1.1.4.2 Method 2: Hydrogen Atom Substitution of Lesser Functionalized Sulfur Ylides .. 27
22.1.1.1.4.2.1 Variation 1: With Sulfur-Based Electrophiles 28
22.1.1.1.4.2.2 Variation 2: With Carbon-Based Electrophiles 31
22.1.1.1.4.3 Method 3: Synthesis from Carbenes .. 31
22.1.1.1.4.3.1 Variation 1: Photolytic Decomposition of Diazo Compounds 31
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1.1.4.3.2</td>
</tr>
<tr>
<td>22.1.1.4.3.3</td>
</tr>
<tr>
<td>22.1.1.4.3.4</td>
</tr>
<tr>
<td>22.1.1.4.3.5</td>
</tr>
<tr>
<td>22.1.1.4.4</td>
</tr>
<tr>
<td>22.1.1.4.5</td>
</tr>
<tr>
<td>22.1.1.4.6</td>
</tr>
<tr>
<td>22.1.1.5</td>
</tr>
<tr>
<td>22.1.1.5.1</td>
</tr>
<tr>
<td>22.1.1.5.1.1</td>
</tr>
<tr>
<td>22.1.1.5.1.2</td>
</tr>
<tr>
<td>22.1.1.6</td>
</tr>
<tr>
<td>22.1.1.6.1</td>
</tr>
<tr>
<td>22.1.1.6.2</td>
</tr>
<tr>
<td>22.1.1.6.3</td>
</tr>
<tr>
<td>22.1.1.6.4</td>
</tr>
<tr>
<td>22.1.1.6.4.1</td>
</tr>
<tr>
<td>22.1.1.6.5</td>
</tr>
<tr>
<td>22.1.1.7</td>
</tr>
<tr>
<td>22.1.1.7.1</td>
</tr>
<tr>
<td>22.1.1.7.1.1</td>
</tr>
<tr>
<td>22.1.1.7.1.2</td>
</tr>
<tr>
<td>22.1.1.7.2</td>
</tr>
<tr>
<td>22.1.1.7.2.1</td>
</tr>
<tr>
<td>22.1.1.7.2.2</td>
</tr>
<tr>
<td>22.1.1.7.3</td>
</tr>
<tr>
<td>22.1.1.7.3.1</td>
</tr>
<tr>
<td>22.1.1.7.3.2</td>
</tr>
<tr>
<td>22.1.1.7.4</td>
</tr>
<tr>
<td>22.1.1.7.4.1</td>
</tr>
<tr>
<td>22.1.1.7.4.2</td>
</tr>
<tr>
<td>22.1.1.7.5</td>
</tr>
<tr>
<td>22.1.1.7.6</td>
</tr>
<tr>
<td>22.1.1.8</td>
</tr>
<tr>
<td>22.1.1.8.1</td>
</tr>
<tr>
<td>22.1.1.8.1.1</td>
</tr>
<tr>
<td>22.1.1.8.1.2</td>
</tr>
<tr>
<td>22.1.1.8.1.3</td>
</tr>
<tr>
<td>22.1.1.8.1.4</td>
</tr>
</tbody>
</table>
22.1.2.2 Halogen-Substituted Sulfur Ylides

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Method</th>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,3-Electrocyclization Reactions</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Preparation of α-Hydroxy Aldehydes and Acetals</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rearrangement Reactions</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

22.1.2.3 Sulfur-Substituted Sulfur Ylides

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Method</th>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rearrangement Reactions</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Reactions with Aldehydes</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Reactions with Electron-Deficient Alkenes</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cycloreversion Reactions</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Hydrolysis Reactions</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

22.1.2.4 Selenium-Substituted Sulfur Ylides

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Method</th>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Miscellaneous Applications</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

22.1.2.5 Nitrogen-Substituted Sulfur Ylides

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Method</th>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Miscellaneous Applications</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

22.1.2.6 Phosphorus-Substituted Sulfur Ylides

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Method</th>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reaction with Aldehydes</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Reaction with Electron-Deficient Alkenes</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rearrangement Reactions</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Miscellaneous Applications</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

22.1.2 Product Subclass 2: Thioacyl Halides

R. S. Glass

22.1.2.1 Synthesis of Product Subclass 2

<table>
<thead>
<tr>
<th>Method</th>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sulfuration</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>Dehalogenation of Haloalkanesulfenyl Chlorides</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>By Substitution of Dithiocarboxylic Acids</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>By Nucleophilic Substitution of Thiophosgene</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>By C=S Cleavage of α-Thioether Cations</td>
<td>78</td>
</tr>
</tbody>
</table>

22.1.2.2 Applications of Product Subclass 2 in Organic Synthesis

<table>
<thead>
<tr>
<th>Method</th>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acyl Nucleophilic Substitution</td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>Reductive Dimerization</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>Friedel–Crafts Thioacylation</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>Cycloaddition Reactions</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>Oxidation</td>
<td>81</td>
</tr>
</tbody>
</table>

22.1.3 Product Subclass 3: Thiocarboxylic O-Acid Esters

R. S. Glass

22.1.3.1 Synthesis of Product Subclass 3

<table>
<thead>
<tr>
<th>Method</th>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thioacylation of Alcohols</td>
<td>85</td>
</tr>
</tbody>
</table>
22.1.3.1.1 Variation 1: Thioacylation of Alcohols with Thioaryl Chlorides

22.1.3.1.2 Variation 2: Thioacylation of Alcohols with Nitro(thioacyl)benzotriazoles

22.1.3.1.2 Method 2: Thionation of Esters

22.1.3.1.2.1 Variation 1: By Thionation of Esters with Lawesson’s Reagent

22.1.3.1.2.2 Variation 2: By Microwave Irradiation with Lawesson’s Reagent

22.1.3.1.2.3 Variation 3: With Phosphorus Pentasulfide and Hexamethyldisiloxane

22.1.3.1.3 Method 3: Thiolysis of Imino Ethers

22.1.3.1.3.1 Variation 1: From Carboxamides

22.1.3.1.3.2 Variation 2: From Nitriles

22.1.3.1.4 Method 4: Alkoxythiocarboxylation of Enolates

22.1.3.1.5 Method 5: Elimination of Monothioacetal Derivatives

22.1.3.1.5.1 Variation 1: Photochemical Elimination

22.1.3.1.5.2 Variation 2: Thermolysis of Thiosulfinates

22.1.3.2 Application of Product Subclass 3 in Organic Synthesis

22.1.3.2.1 Method 1: Thioacylation

22.1.3.2.2 Method 2: Nucleophilic Addition

22.1.3.2.2.1 Variation 1: Redox Glycosidation

22.1.3.2.2.2 Variation 2: Organometallic Addition and Methylation

22.1.3.2.3 Method 3: Synthesis of Heterocycles

22.1.3.2.4 Method 4: Enolate Reactions

22.1.3.2.4.1 Variation 1: Claisen Rearrangement

22.1.3.2.4.2 Variation 2: Aldol Addition

22.1.3.2.4.3 Variation 3: Michael Addition

22.1.3.2.4.4 Variation 4: Horner–Emmons Reaction

22.1.3.2.5 Method 5: Cycloaddition Reactions

22.1.3.2.5.1 Variation 1: Diels–Alder 2π-Components

22.1.3.2.5.2 Variation 2: Diels–Alder 4π-Components

22.1.3.2.5.3 Variation 3: 1,3-Dipolar Cycloaddition Reactions

22.1.3.2.5.4 Variation 4: Photochemical [2 + 2] Cycloaddition

22.1.3.2.6 Method 6: Reductive Desulfurization

22.1.3.2.6.1 Variation 1: Reductive Desulfurization with Triphenyltin Hydride

22.1.3.2.6.2 Variation 2: Reductive Desulfurization with Tributyltin Hydride

22.1.3.2.7 Method 7: Reductive Dimerization

22.1.3.2.8 Method 8: Barton–McCombie Deoxygenation of Secondary Alcohols

22.1.3.2.9 Method 9: Fluorinative Desulfurization

22.1.4 Product Subclass 4: Dithiocarboxylic Acid Esters

22.1.4.1 Synthesis of Product Subclass 4

22.1.4.1.1 Method 1: Thioacylation of Thiols

22.1.4.1.2 Method 2: Thionation of Carboxylic Acids

22.1.4.1.3 Method 3: Thiolysis of Imino Thioethers

22.1.4.1.4 Method 4: Dithiocarboxylation

22.1.4.1.4.1 Variation 1: Dithiocarboxylation of Grignard Reagents

22.1.4.1.4.2 Variation 2: Dithiocarboxylation of Sulfone α-Carbanions
22.1.4.3 Variation 3: Dithiocarboxyalkylation .. 114
22.1.4.5 Method 5: Friedel–Crafts Alkyldithiocarboxylation 115
22.1.4.6 Method 6: Bromination of Tin Dithiocarboxylates 116
22.1.4.7 Method 7: Reaction of Dithiocarboxylates with Halophosphines, Thiophosphinic Chloride, and Selenophosphinic Chloride 116
22.1.4.8 Method 8: Acylation of Dithiophosphoric Acids 117
22.1.4.9 Method 9: Amination of Arenedithiocarboxylates 118
22.1.4 Method 10: Applications of Product Subclass 4 in Organic Synthesis .. 118
22.1.4.2 Method 1: Thioacylation .. 118
22.1.4.2.1 Variation 1: Aminolysis of Dithioesters 118
22.1.4.2.2 Variation 2: Aminolysis of S-Thioacyl Dithiophosphates 119
22.1.4.2.3 Variation 3: Synthesis of Thiocarboxylic Acids 120
22.1.4.2.2 Method 2: Addition of Organometallic Reagents 120
22.1.4.2.2.1 Variation 1: Carbophilic Addition of Grignard Reagents 120
22.1.4.2.2.2 Variation 2: Thiophilic Addition of Grignard Reagents 121
22.1.4.2.3 Method 3: Synthesis of S-Aryl-1,4,2-dithiazolium Salts 122
22.1.4.2.4 Method 4: Synthesis of Penems 123
22.1.4.2.5 Method 5: Enethiolates and Ketene Dithioacetals 123
22.1.4.2.5.1 Variation 1: S-Alkylation and S-Silylation of Enethiolates .. 124
22.1.4.2.5.2 Variation 2: Aldol Addition 125
22.1.4.2.5.3 Variation 3: Addition to Imines 125
22.1.4.2.5.4 Variation 4: Addition to Azodicarboxylates 126
22.1.4.2.5.5 Variation 5: Michael Addition 127
22.1.4.2.6 Method 6: Cycloaddition Reactions 128
22.1.4.2.6.1 Variation 1: Diels–Alder Cycloaddition Reactions 128
22.1.4.2.6.2 Variation 2: 1,3-Dipolar Cycloaddition with Diazomethane 129
22.1.4.2.6.3 Variation 3: 1,3-Dipolar Cycloaddition with Phenyl Azide ... 130
22.1.4.2.7 Method 7: Oxidation ... 130

Product Subclass 5: Selenothiocarboxylic Se-Acid Esters
R. S. Glass

22.1.5 Synthesis of Product Subclass 5 ... 133
22.1.5.1 Method 1: Thioacylation of Areneselenolates 133
22.1.5.1.1 Variation 1: Thioacylation with Thioacyl Chlorides 133
22.1.5.1.2 Variation 2: Thioacylation with Bis(thioacyl) Sulfides 133
22.1.5.1.2 Method 2: Reaction of Thiocarboxylic O-Acid Esters with Dialkylaluminum Alkaneselenolates .. 134
22.1.5.1.3 Method 3: Se-Alkylation of Selenothioates 134
22.1.5.1.4 Method 4: Sulfuration of a Selanylynamine 135
22.1.5.2 Applications of Product Subclass 5 in Organic Synthesis 135
22.1.5.2.1 Method 1: Thioacylation ... 135
22.1.5.2.2 Method 2: Alkylation of Enethiolates 135
22.1.5.2.3 Method 3: Oxidation .. 136
22.1.6 Product Subclass 6: Tellurothiocarboxylic Te-Acid Esters
R. S. Glass

22.1.7 Product Subclass 7: Thioamides
H. Lebel

Table of Contents