Ibuprofen
Ibuprofen
Discovery, Development and Therapeutics

EDITED BY

K.D. RAINSFORD
Biomedical Research Centre, Sheffield Hallam University, UK

WILEY Blackwell
Contents

List of Contributors xiii

Preface xv

1 History and Development of Ibuprofen 1

K.D. Rainsford

Summary 1

1.1 Introduction 1

1.2 Historical Background 5

1.3 Initial Stages 7

1.4 Compounds in Development 10

1.5 Ibufenac – Almost There, but for Liver Toxicity 12

1.6 More Setbacks 12

1.7 More Learning 12

1.8 Ibuprofen 12

1.8.1 First Clinical Trials 12

1.8.2 Gastrointestinal Safety 14

1.9 Achievements and Rewards at Last 15

1.10 Ultimate Recognition of Safety – OTC Status 17

1.11 Worldwide Developments 19

1.11.1 Evolving Applications of Ibuprofen 19

Acknowledgements 20

References 20

2 The Medicinal Chemistry of Ibuprofen 22

Kenneth J. Nichol and David W. Allen

2.1 Introduction 22

2.2 The Discovery of Ibuprofen 22

2.3 Synthetic Routes to Ibuprofen 27

2.4 Biological Activities of Ibuprofen Analogues 31

2.5 Metabolites of Ibuprofen 36

2.5.1 Metabolites and Enantiomer Inversion 36

2.5.2 Synthesis of Metabolites 37

2.6 Ibuprofen Enantiomers 38

2.7 Physicochemical Aspects 42

Acknowledgements 43

References 43
3 The Pharmaceutics of Ibuprofen
Fred Higton

Summary
3.1 Physical and Chemical Characteristics of Ibuprofen 51
3.2 Products Available Worldwide 55
3.3 Solid Dose Presentations
 3.3.1 Conventional Ibuprofen Tablets 57
 3.3.2 In vitro/in vivo Testing 59
 3.3.3 Sustained Release Preparations 61
 3.3.4 Ibuprofen Fast Acting: Ibuprofen Salts and Derivatives 65
3.4 Liquids 68
3.5 Taste-Masking of Ibuprofen 68
3.6 Suppositories 70
3.7 Topical Presentations 71
3.8 Conclusion 73

References 73

4 The Pharmacokinetics of Ibuprofen in Humans and Animals
Fakhreddin Jamali and Dion R. Brocks

Summary
4.1 Absorption 82
4.2 Distribution
 4.2.1 Protein Binding 83
 4.2.2 Tissue Distribution 88
4.3 Clearance
 4.3.1 Metabolism of Ibuprofen 92
 4.3.2 Excretion of Ibuprofen 104
4.4 Interspecies Differences in Pharmacokinetics of (R)- and (S)-Ibuprofen 105
4.5 Relationship between Effect and Plasma Concentrations
 4.5.1 Therapeutic Effects 106
 4.5.2 Toxic Effects 107
4.6 Pharmacokinetics in Special Populations
 4.6.1 Pharmacokinetics and Analgesic Effects in Patients in Pain 108
 4.6.2 Febrile Children and Infants 114
 4.6.3 Postoperative Paediatric Patients 115
 4.6.4 Premature Infants 115
 4.6.5 Juvenile Arthritis 116
 4.6.6 Children with Cystic Fibrosis 116
 4.6.7 Elderly Adults 117
 4.6.8 Rheumatic Disease 117
 4.6.9 Renal Insufficiency 118
 4.6.10 Hepatic Disease 119
 4.6.11 Burn Patients 119
 4.6.12 Effect of Gender and Race 119
 4.6.13 Effect of Operational Stessors 120
4.7 Drug Interactions
 4.7.1 Anti-ulcer Medications 120
 4.7.2 Zidovudine 121
 4.7.3 Codeine and Oxycodone 121
5 Pharmacology and Toxicology of Ibuprofen

K.D. Rainsford

Summary

5.1 Introduction

5.2 Basic Pharmacology and Toxicology

5.2.1 The Relevance of Data from Animal Models to the Clinical Situation in Humans

5.2.2 Acute Anti-inflammatory Activity

5.2.3 Chronic Anti-inflammatory Activity

5.2.4 Analgesic Activity

5.2.5 Antipyretic Activity

5.2.6 General Toxicology

5.2.7 Effects on Prostaglandin Production Related to Pharmacological Activities

5.2.8 Effects on Leukotriene Production

5.2.9 Smooth Muscle Contractility

5.2.10 Effects on Nitric Oxide Production

5.2.11 Leucocytes and Vascular Permeability

5.2.12 Leukocyte Functions

5.2.13 Immune Functions

5.2.14 Effects on Articular Joint Integrity

5.2.15 Miscellaneous Biochemical and Cellular Actions

5.3 Experimental Therapeutics

5.3.1 Endotoxin Shock

5.3.2 Acute Lung Injury Induced by Exposure to Chemicals

5.3.3 Acute Myocardial Injury and Coronary Functions

5.3.4 Cerebral Injury

5.3.5 Tourniquet Shock Ischemia

5.3.6 Transcutaneous Hypoxia

5.3.7 Cytokines and Surgical Stress

5.3.8 Pleurisy from Delayed Hypersensitivity Reaction

5.3.9 Abdominal Adhesions

5.3.10 Uveitis

5.4 Clinical Pharmacology and Toxicology

5.4.1 Experimental Inflammation

5.4.2 Experimental Pain

5.4.3 Effects on Platelet Aggregation and Thrombosis

5.4.4 Gastrointestinal Injury and Bleeding

5.4.5 Hypersensitivity and Other Immunological Reactions

5.4.6 Gynaecological and Obstetric Uses

5.4.7 Effects on Lung Inflammation in Cystic Fibrosis

5.4.8 Malignant Conditions

5.4.9 Prevention of Cataract

5.5 Conclusions

References
6 Therapeutics of Ibuprofen in Rheumatic and Other Chronic and Painful Diseases
Walter F. Kean, K.D. Rainsford and the late W. Watson Buchanan

Summary
6.1 Introduction
6.2 Overview of Clinical Pharmacology
6.2.1 Pharmacokinetics Relevant to Therapy of Inflammatory Diseases and Pain
6.2.2 Anti-inflammatory and Analgesic Activities
6.2.3 Criteria for Determining Therapeutic Responses
6.3 NSAID-Related Adverse Drug Reactions and Toxicity
6.3.1 Gastrointestinal Side-Effects
6.3.2 Cardiovascular Reactions
6.3.3 Hepatic Reactions
6.3.4 Renal Adverse Reactions
6.3.5 Miscellaneous Reactions
6.4 Rheumatoid Arthritis
6.4.1 Early Studies at Low Doses
6.4.2 Later Higher-Dose Studies
6.5 Juvenile Idiopathic (Rheumatoid) Arthritis
6.6 Primary and Secondary Osteoarthritis
6.6.1 Acceleration of Cartilage and Bone Destruction
6.6.2 Therapeutic Aspects
6.6.3 Comparisons with Coxibs
6.7 Formulations
6.8 Variability in Response
6.9 Relation of Drug Kinetics to Clinical Response
6.10 Low Back Pain
6.11 Shoulder Pain
6.12 Reactive Arthritis (Reiter’s Syndrome)
6.13 Psoriatic Arthritis
6.14 Ankylosing Spondylitis
6.15 Gout
6.16 Fibromyalgia
6.17 Haemophiliac Arthritis
6.18 Postoperative Pain
6.19 Sports Injuries
6.20 Other Painful States
6.21 Cancer
6.22 Potential Non-analgesic Usage
6.23 The Elderly
6.24 Dexibuprofen
6.25 Conclusions
References

7 Safety and Efficacy of Non-prescription, Over-the-Counter (OTC) Ibuprofen
K.D. Rainsford

Summary
7.1 Introduction
7.2 Analysis of Clinical Trials
7.2.1 Studies in Prospective Clinical Trials
7.3 Epidemiological Studies and Case Reports 327
7.4 Considerations for Special Groups 330
 7.4.1 Use of Drugs in the Elderly 330
 7.4.2 Safety in Pregnancy and Lactation 331
 7.4.3 Uses and Safety in Sport and Exercise 334
7.5 Conclusions 336
References 336

8 Use of Ibuprofen in Dentistry 346
Raymond A. Dionne, Sharon M. Gordon and Stephen A. Cooper

8.1 Introduction 346
8.2 Analgesia 347
 8.2.1 Preventive Analgesia 348
 8.2.2 Analgesic Activity of Ibuprofen Isomers 349
 8.2.3 Ibuprofen-Containing Combinations 350
 8.2.4 Ibuprofen Formulations 354
8.3 Effects on Oedema 355
8.4 Interactions with Plasma β-Endorphin 356
8.5 Use for Chronic Temporomandibular Pain 356
8.6 Recommendations for the Use of Ibuprofen in Dentistry 358
References 359

9 Gastrointestinal Adverse Reactions from Ibuprofen 363
K.D. Rainsford and Ingvar Bjarnason

Summary 363
9.1 Background and Introduction 364
9.2 Current Status Concerning NSAID Ulceration 365
 9.2.1 Morbidity and Mortality 366
9.3 Occurrence of Ulcers and Complications 369
 9.3.1 Epidemiological Studies 369
 9.3.2 Large-Scale Mega Trials 376
9.4 Clinical Investigations on Comparative GI Effects of Ibuprofen 378
 9.4.1 Early Symptom-Based Studies in GI-Intolerant Subjects 378
 9.4.2 Procedures for Assessing GI Injury 379
 9.4.3 Upper GI Endoscopy 380
 9.4.4 NSAID-Enteropathy: Capsule and Device Assisted Intestinal Endoscopy and Other Techniques 381
 9.4.5 Radiochromium [51Cr]-Labelled Red Cell GI Blood Loss 387
 9.4.6 Intragastric and Occult Blood Loss and Reduced Haemoglobin 392
9.5 Clinically-Relevant Pathogenesis of NSAID-Associated GI Injury 395
 9.5.1 Factors Affecting NSAID-Induced Gastroduodenal Injury 395
 9.5.2 Influence of Gastric Acidity 395
 9.5.3 Physicochemical Associations, Topical versus Systemic Actions of NSAIDs, Cyclo-oxygenases and Reduced Prostanoids 397
 9.5.4 Effects of NSAIDs on Gastric pH and Acid Secretion 400
9.6 Procedures for Reducing GI Symptoms 402
 9.6.1 Ibuprofen Formulations 402
 9.6.2 Effects of Food or Drinks 404
10 Hepatorenal Effects of Ibuprofen Compared with other NSAIDs and Paracetamol 430

K.D. Rainsford

10.1 Introduction 430
10.2 Hepatorenal Syndromes 431
10.3 NSAID, Analgesic and DMARD-Induced Liver Injury 431
 10.3.1 Historical Associations of NSAIDs with Liver Toxicity 431
 10.3.2 Awareness of Liver Reactions with Modern NSAIDs 432
 10.3.3 Simultaneous Use of Potentially Hepatotoxic Medications 437
10.4 Renal Adverse Reactions From NSAIDs and Analgesics 440
 10.4.1 Renal Adverse Reactions from Ibuprofen 442
10.5 Conclusions 444
References 444

11 Adverse Drug Reactions Attributed to Ibuprofen: Effects Other Than Gastrointestinal 450

L.J. Miwa, M. Maneno and Judith K. Jones

11.1 Introduction 450
11.2 Allergy and Hypersensitivity 451
 11.2.1 Points to Consider when Evaluating Allergy-Type
 Reactions to NSAIDs 451
 11.2.2 Epidemiology of Allergy or Hypersensitivity with NSAIDs 452
11.3 Adverse Dermatological Effects 455
11.4 Hepatotoxicity 456
11.5 Haematological Adverse Effects 463
 11.5.1 Neutropenia, agranulocytosis and aplastic anaemia 463
 11.5.2 Other Blood Disorders 464
11.6 Renal Adverse Effects 464
11.7 Cardiovascular Adverse Effects 468
11.8 Adverse Effects on Reproduction 475
 11.8.1 Animal Studies of Teratogenic and Reproductive Effects 475
 11.8.2 Reports of Teratogenic Effects in Humans 476
 11.8.3 Perinatal Adverse Effects Associated with Therapeutic Use 477
 11.8.4 Other Reproductive Effects 478
11.9 Endocrine and Metabolic Adverse Effects 478
11.10 Central Nervous System Effects 478
 11.10.1 General CNS Effects 478
 11.10.2 Aseptic Meningitis 479
 11.10.3 Cognitive Dysfunction 479
 11.10.4 Psychiatric Adverse Effects 479
11.11 Ocular Adverse Effects 479
11.12 Infection-Related Adverse Event 480
11.13 Drug Interactions 480
 11.13.1 NSAID–Anti-hypertensive Interactions 481
 11.13.2 NSAID–Diuretic Interactions 482
 11.13.3 NSAID–β-Adrenergic Blocker Interactions 482
11.13.4 NSAID–Angiotensin-Converting Enzyme Inhibitor Interactions 482
11.13.5 NSAID–Oral Anti-coagulant Interactions 482
11.13.6 NSAID–Aminoglycoside Interactions 483
11.13.7 NSAID–Oral Hypoglycemic Interactions 483
11.13.8 NSAID–Cyclosporin Interactions 483
11.13.9 NSAID–Lithium Interactions 483
11.13.10 NSAID–Methotrexate Interactions 483
11.13.11 Ibuprofen–Aspirin Interactions 484
11.14 Future Needs 484
References 485

12 Human Toxicity of Ibuprofen

Summary 498
12.1 Introduction 498
12.2 Mechanism of Toxicity in Overdosage 499
12.3 Epidemiological Reviews of the Effects of Ibuprofen in Overdosage 499
12.4 Reports of Deaths after Ibuprofen Overdose 500
12.5 Dose–Response and Toxicokinetics 500
12.6 Gastrointestinal Effects 506
12.7 Renal Effects 507
 12.7.1 Cases of Massive Overdose 507
 12.7.2 Cases Affected by Additional Factors 507
12.8 Metabolic Effects 508
12.9 Central Nervous System (CNS) Effects 509
12.10 Cardiovascular Effects 509
12.11 Respiratory Effects 510
12.12 Haematological Effects 510
12.13 Skin Reactions 510
12.14 Ibuprofen Toxicity in Children 510
12.15 Ibuprofen in Pregnancy and Breast Feeding 511
12.16 Chronic Abuse of Ibuprofen 511
12.17 Conclusion 512
 12.17.1 Management of Ibuprofen Overdosage 512
 12.17.2 Continuing Surveillance 513
 12.17.3 Comparative Human Toxicity – Ibuprofen versus Other NSAIDs and Non-opioid Analgesics 514
References 514

13 Ibuprofen in the Prevention and Therapy of Cancer

Summary 518
13.1 Introduction and Background 519
13.2 Ibuprofen, COX-1 and COX-2 520
13.3 COX-2 and the Inflammogenesis of Cancer 520
13.4 Preclinical Efficacy Studies of Ibuprofen and Cancer 521
 13.4.1 Preclinical Efficacy Study of Ibuprofen Therapy for Breast Cancer 521
 13.4.2 Preclinical Efficacy Study of Ibuprofen versus Retinoic Acid for the Prevention of Breast Cancer 521
13.4.3 Preclinical Efficacy Study of Celecoxib versus Ibuprofen for the Prevention of Breast Cancer 522
13.4.4 Other Animal Studies of NSAIDs and Cancer 522
13.5 Human Epidemiologic Studies of Ibuprofen for the Prevention of Cancers of the Breast, Colon, Prostate and Lung 523
13.5.1 Methods of Analysis 524
13.5.2 Comparative Results for Ibuprofen and Aspirin from Epidemiologic Studies of Cancers of the Breast, Colon, Prostate and Lung 524
13.5.3 Comparison of Ibuprofen, Aspirin and Selective COX-2 Inhibitors in Cancer Prevention 525
13.5.4 Meta-analyses of Epidemiologic Studies of NSAIDs for Cancer Prevention 526
13.5.5 Discussion of Meta-analyses of NSAIDs and Cancer 528
13.6 Therapeutic Studies of Non-selective COX-2 Inhibitors for Human Cancer 529
13.7 COX-2 and the Inflammogenesis of Cancer 531
13.7.1 COX-2 Blockade of Molecular Carcinogenesis 531
13.7.2 Role of COX-1 in Carcinogenesis 532
13.7.3 Other Molecular Targets of NSAIDs 533
13.8 Safety Profile of Ibuprofen 533
13.8.1 COX-1 and COX-2 Isoforms 533
13.8.2 Gastrointestinal and Renal Effects of Ibuprofen 533
13.8.3 Ibuprofen and Cardiovascular Disease 534
13.9 Future Perspectives for Cyclooxygenase Inhibitors in Cancer Chemoprevention 534
References 535

14 Ibuprofen in Prevention of Neurodegenerative Diseases 547

K.D. Rainsford

Summary 547
14.1 Introduction 548
14.2 Pathogenesis of AD 548
14.3 Early Clinical Observations of Effects of NSAIDs in AD 549
14.4 Cellular and Molecular Effects of Ibuprofen in AD 553
14.4.1 Actions of Ibuprofen in Rodent AD Models 554
14.4.2 In Vitro Effects and Molecular Actions of Ibuprofen in AD 556
14.4.3 Conclusions 557
14.5 Ibuprofen in Parkinson’s Disease 557
14.5.1 Effects of Ibuprofen in Models of PD 559
14.6 Other Neuroprotective Effects of Ibuprofen 559
14.7 Conclusions 560
References 560

Appendix A Some Proprietary Brands and Preparations of Ibuprofen Available Worldwide 571

K.D. Rainsford

Appendix B References to Analytical Methods for Determination of Ibuprofen in Biological Fluids, Principally Plasma 581

K.D. Rainsford

Index 588
List of Contributors

Professor K.D. Rainsford, PhD, FRCPEdin, FRCPath, FRSC, FSB, FIBMS, Dr(hc) Biomedical Research Centre, Sheffield Hallam University, UK

Professor David W. Allen, DSc Biomedical Research Centre, Sheffield Hallam University, UK

Professor Ingvar Bjarnason MD, MSc, FRCPath, FRCP (Glasg), DSc Department of Gastroenterology, King’s College Hospital, UK

Dr Dion R. Brocks, PhD Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, Canada

Professor W. Watson Buchanan, MD, FRCP (Glas, Edin, C) (the late) Sir William Osler Health Institute and McMaster University Faculty of Health Sciences, Canada

Dr Stephen A. Cooper, DDS, PhD Palm Beach, USA

Dr Raymond A. Dionne, DDS, MS, PhD East Carolina University, Brody School of Medicine, Greenville, NC, USA

Dr Sharon M. Gordon, DDS, MPH, PhD School of Dental Medicine, East Carolina University, Greenville, NC, USA

Professor Randall E. Harris, MD, PhD Center of Molecular Epidemiology and Environmental Health, Colleges of Medicine and Public Health, Division of Epidemiology and Department of Emergency Medicine, The Ohio State University Medical Center, USA

Dr Fred Higton, PhD Higton Associates, UK

Professor Fakhreddin Jamali, Faculty of Pharmacy and Pharmaceutical Sciences, Katz Centre for Pharmacy and Health Research, Canada

Dr Judith K. Jones, MD, PhD The Degge Group, Drug Safety Research and Information, USA

Professor Walter F. Kean, MB ChB, MD (Glas), FRCP (Glas, Edin, C) McMaster University Faculty of Health Sciences, Canada

Dr M. Maneno The Degge Group, Drug Safety Research and Information, USA