Polyamine Drug Discovery
RSC Drug Discovery Series

Editor-in-Chief:
Professor David Thurston, London School of Pharmacy, UK

Series Editors:
Dr David Fox, Pfizer Global Research and Development, Sandwich, UK
Professor Salvatore Guccione, University of Catania, Italy
Professor Ana Martinez, Instituto de Quimica Medica-CSIC, Spain
Dr David Rotella, Montclair State University, USA

Advisor to the Board:
Professor Robin Ganellin, University College London, UK

Titles in the Series:
1: Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical Building Blocks on ADMET
2: Emerging Drugs and Targets for Alzheimer’s Disease; Volume 1: Beta-Amyloid, Tau Protein and Glucose Metabolism
3: Emerging Drugs and Targets for Alzheimer’s Disease; Volume 2: Neuronal Plasticity, Neuronal Protection and Other Miscellaneous Strategies
4: Accounts in Drug Discovery: Case Studies in Medicinal Chemistry
5: New Frontiers in Chemical Biology: Enabling Drug Discovery
6: Animal Models for Neurodegenerative Disease
7: Neurodegeneration: Metallostasis and Proteostasis
8: G Protein-Coupled Receptors: From Structure to Function
9: Pharmaceutical Process Development: Current Chemical and Engineering Challenges
10: Extracellular and Intracellular Signaling
11: New Synthetic Technologies in Medicinal Chemistry
12: New Horizons in Predictive Toxicology: Current Status and Application
13: Drug Design Strategies: Quantitative Approaches
14: Neglected Diseases and Drug Discovery
15: Biomedical Imaging: The Chemistry of Labels, Probes and Contrast Agents
16: Pharmaceutical Salts and Cocrystals
17: Polyamine Drug Discovery

How to obtain future titles on publication:
A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:
Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK
Telephone: +44 (0)1223 420066, Fax: +44 (0)1223 420247, Email: books@rsc.org
Visit our website at http://www.rsc.org/Shop/Books/
Polyamine Drug Discovery

Edited by

Patrick M. Woster
Medical University of South Carolina, Charleston, SC, USA

Robert A. Casero, Jr.
John Hopkins University, Baltimore, MD, USA
There have been many significant advances in polyamine research since the field was brought to the forefront of biological and biomedical research in the 1970s. Many of the significant findings since that time, whether in plant research, cell biology, the development of therapeutics, genetics or another related field, have been aided by the availability of synthetic compounds specifically designed to inhibit enzymes in the polyamine pathway or otherwise disrupt polyamine metabolism. For example, a search of PubMed using the terms difluoromethylornithine AND dfmo AND eflornithine produces 1179 references dating to 1980, and including research in diverse areas such as plant biochemistry, cancer cell biology, parasitology, insect biochemistry, synthetic chemistry, drug development and human clinical trials. Despite the diversity of fields of endeavor within polyamine research and the significant impact of modulators of polyamine metabolism, a book dedicated to the discovery and development of synthetic compounds targeting polyamine metabolism as drugs has never been produced. The purpose of this book is to fill that void by presenting an overview of drug-discovery research within the polyamine field.

The impetus for a significant portion of polyamine research has been provided by the availability of synthetic analogs that produce defined effects on polyamine metabolism in vitro and in vivo. This book begins with a chapter that outlines the synthetic approaches to these analogs, covering areas such as nucleotide synthesis and synthetic routes used to access various polyamine analogs. The structural biology aspects of polyamine drug discovery are detailed, as are efforts to design and discover specific inhibitors of enzymes in the polyamine pathway. Chapters are also included that address the role of polyamine analogs as antiparasitic agents, antineoplastic agents and epigenetic modulators. In addition, the important role played by polyamine oxidation is detailed. Other important areas within polyamine drug discovery research, such
as polyamine transport, the development of polyamine–metal complexes as antitumor agents and the design of polyamine-based gene transfer reagents, are discussed. Finally, a chapter is included that describes the promising results from recent human clinical trials involving drugs targeting polyamine metabolism. The result is a broad overview of polyamine drug discovery and the translation of new chemical entities from basic chemistry to studies involving patients.

Those of us who have a long history in polyamine drug discovery research know that it is a cyclic endeavor, with drug discovery successes appearing periodically and clinical successes appearing steadily but infrequently. However, recent clinical research with existing compounds, including DFMO and the bis(ethyl)polyamine analogs PG-11093 and PG-11144, bode well for the future. In particular, DFMO has found utility as a chemopreventative agent in combination with sulindac, and the bis(ethyl)polyamines have produced promising results in combination antitumor studies. Not since the advent of DFMO has the field of polyamine drug discovery research been so close to bringing a drug to market. We hope that after perusing this book, the reader will have gained an appreciation for polyamine drug discovery efforts that are occurring on multiple fronts. We also hope that you will share the confidence inherent in modern polyamine researchers that significant successes in polyamine drug discovery are on the horizon.

Patrick M. Woster
Robert A. Casero, Jr
Contents

Chapter 1 Polyamine Drug Discovery: Synthetic Approaches to Therapeutic Modulators of Polyamine Metabolism 1
 Patrick M. Woster

1.1 Introduction 1
1.2 Polyamine Metabolism as a Drug Target 2
1.3 Synthetic Approaches to Modulators of Polyamine Metabolism and Function
 1.3.1 Ornithine Decarboxylase (ODC) 3
 1.3.2 S-Adenosylmethionine Decarboxylase (AdoMet-DC) 6
 1.3.3 Spermidine Synthase and Spermine Synthase 15
 1.3.4 Terminally Alkylated Polyamine Analogs 17
 1.3.5 Polyamine-Based Epigenetic Modulators 19
1.4 Conclusion 24
References 24

Chapter 2 Structural Biology in Polyamine Drug Discovery 28
 Shridhar Bale and Steven E. Ealick

2.1 Structural Biology and Drug Design 28
2.2 Structural Biology of Polyamine-Related Enzymes 29
2.3 S-Adenosylmethionine Decarboxylase 32
2.4 Early Inhibitors of Human AdoMetDC 34
2.5 Crystal Structure of Human AdoMetDC and Mutants 35
2.6 Inhibitor Design for Active Site of AdoMetDC
 2.6.1 Role of the Central Nitrogen/Sulfonium Atom 37
 2.6.2 Role of the Linker Length and Terminal Group 38
 2.6.3 Effect of 8-Substitution 40

RSC Drug Discovery Series No. 17
Polyamine Drug Discovery
Edited by Patrick M. Woster and Robert A. Casero, Jr.
© Royal Society of Chemistry 2012
Published by the Royal Society of Chemistry, www.rsc.org
2.7 Search for New Inhibitors by Virtual Screening 41
2.8 Inhibitor Design for the Putrescine-Binding Site and Proenzyme 41
2.9 Interspecies Correlations 43
 2.9.1 Classification of AdoMetDC 43
 2.9.2 Ligand Binding in Prokaryotic AdoMetDC 44
 2.9.3 Implications of the Prozyme 45
References 46

Chapter 3 Antiparasitic Drug Discovery for the Polyamine Pathway 50
Nigel Yarlett and Mary Morada
 3.1 Ornithine Decarboxylase 50
 3.2 S-Adenosylmethionine Decarboxylase 53
 3.3 Spermidine Synthase 55
 3.4 Trypanothione Synthase 57
 3.5 Trypanothione Reductase 61
 3.5.1 Tricyclics 61
 3.5.2 Polyamine Analogs 62
 3.5.3 Redox Inhibitors 62
 3.5.4 Substrate Analogs 64
 3.5.5 Compounds Identified Through Screening of a Library of Drug-Like Compounds 65
 3.6 Hypusine 66
 3.7 Polyamine Retroconversion Pathways: SSAT/PAO/SMO 68
References 72

Chapter 4 Inhibitors of Polyamine Biosynthetic Enzymes 78
Anthony E. Pegg
 4.1 Introduction 78
 4.2 Inhibition of ODC 79
 4.2.1 α-Difluoromethylornithine (DFMO) 79
 4.2.2 Other ODC Inhibitors 83
 4.3 Inhibition of AdoMetDC 84
 4.3.1 MGBG, SAM686A and Related Compounds 84
 4.3.2 AbeAdo and Other AdoMet Derivatives 86
 4.3.3 AbeAdo and Other AdoMetDC Inhibitors 87
 4.3.4 Therapeutic Potential of AdoMetDC Inhibitors 87
 4.4 Inhibition of Aminopropyltransferases 89
 4.4.1 Product Inhibition of Aminopropyltransferases 89
 4.4.2 SpdSyn Inhibitors 89
 4.4.3 SpmSyn Inhibitors 91
Chapter 5 Symmetrical- and Unsymmetrical Terminally Alkylated Polyamines
Patrick M. Woster and Robert A. Casero, Jr

5.1 Introduction 104
5.2 Symmetrical, Terminally Alkylated Polyamines 106
5.3 Unsymmetrical, Terminally Alkylated Polyamines 112
5.4 Polyamine Isosteres and Epigenetic Activity 122
5.5 Future Directions 129
References 129

Chapter 6 Targeting the Polyamine Catabolic Enzymes Spermine Oxidase, N[^1]-Acetylpolyamine Oxidase and Spermidine/Spermine N[^1]-Acetyltransferase
Andrew C. Goodwin, Tracy R. Murray-Stewart and Robert A. Casero, Jr

6.1 Introduction 135
6.2 Structure, Mechanism of Action and Function of Polyamine Catabolic Enzymes 136
6.2.1 Spermidine/Spermine N[^1]-Acetyltransferase (SSAT) 136
6.2.2 N[^1]-Acetylpolyamine Oxidase (APAO) and Spermine Oxidase (SMO) 139
6.3 Modulation of SMO, APAO and SSAT as a Therapeutic Strategy 144
6.3.1 Polyamine Catabolic Enzymes as Rational Drug Targets in Parasitic Diseases 144
6.3.2 Cytotoxic Polyamine Analogs as Selective Chemotherapeutic Agents 145
6.4 Inhibition of Polyamine Catabolism as a Therapeutic Approach 147
6.4.1 Role of SMO in Inflammation-Associated Tumorigenesis 147
6.4.2 Polyamine Catabolism in Ischemic Injuries 149
6.4.3 Association of Polyamine Catabolic Enzymes With Other Human Diseases 149
6.5 Conclusions 150
References 150
Chapter 7 Design of Polyamine Transport Inhibitors as Therapeutics
Otto Phanstiel IV and Jennifer Julian Archer

7.1 Introduction
7.2 Models of Polyamine Transport
7.2.1 Homeostasis, Antizyme and Polyamine Transport
7.3 Transportons and Anti-Transportons, New Words and Definitions
7.4 Role of Polyamine Transportons
7.5 Anti-Transportons
7.5.1 Polypyridinium Quaternary Salts
7.5.2 Irreversible and Sulfur-Containing PAT Inhibitors
7.5.3 Dimeric Branched Polyamine Motifs
7.5.4 Acridinyl Linear Polyamine Conjugates
7.5.5 Aryl-Based Anti-Transportons
7.5.6 Trimeric Polyamine Scaffolds
7.5.7 Polyamine–Glutaraldehyde Polymers
7.5.8 Linear Spermine–Amide Dimers
7.5.9 Amino Acid–Spermine Conjugates
7.5.10 Heparin Sulfate (HS)-Binding Agents
7.5.11 Lipophilic Polyamine Conjugates
7.6 Conclusions
References

Chapter 8 Non-Covalent Polynuclear Platinum Compounds as Polyamine Analogs
Yun Qu, Joseph J. Moniodis, Amanda L. Harris, Xiaohong Yang, Alex Hegmans, Lawrence F. Povirk, Susan J. Berners-Price and Nicholas P. Farrell

8.1 Introduction
8.2 Covalently Binding Polynuclear Platinum Complexes
8.3 Non-Covalent Polynuclear Platinum Complexes
8.3.1 Global DNA-Binding Profile
8.3.2 Solid-State Studies: A New Mode of DNA Binding
8.3.3 Solution Studies: Comparison With Minor Groove Binders
8.3.4 Solution Studies: Binding Location of Pre-Associated BBR3464
8.4 Biochemical Consequences of Non-Covalent Polynuclear Platinum Association
8.4.1 Melphalan Protection Assay
References
10.4 Identification of Polyamine Analogs as LSD1 Inhibitors
10.4.1 Bisguanidine and Biguanide Polyamine Analogs as LSD1 Inhibitors
10.4.2 Oligoamine Polyamine Analogs as LSD1 Inhibitors

10.5 Inhibition of LSD1 by Polyamine Analogs Reactivates Aberrantly Silenced Gene Expressions in Cancer Cells

10.6 Polyamine Analogs Increase Activating Chromatin Marks and Decrease Repressive Marks at the Promoters of Re-Expressed Genes with Retention of DNA Hypermethylation

10.7 Combination of LSD1 Inhibitors with Other Agents Targeting Epigenetic Regulation of Gene Expression

10.8 In Vivo Effects of Polyamine Analogs on LSD1 and Tumor Growth

10.9 Conclusion
Acknowledgment
References

Chapter 11 Clinical Applications of Polyamine-Based Therapeutics

André S. Bachmann and Victor A. Levin

11.1 Introduction
11.2 Polyamine Inhibitors in Therapeutic Clinical Trials
11.2.1 Cancer
11.2.2 Other Diseases
11.3 Polyamine Inhibitors in Chemoprevention Trials
11.3.1 Cancer
11.4 Polyamine Analogs in Therapeutic Clinical Trials
11.4.1 Cancer
11.5 Future Directions
Acknowledgments
References

Subject Index
CHAPTER 1

Polyamine Drug Discovery: Synthetic Approaches to Therapeutic Modulators of Polyamine Metabolism

PATRICK M. WOSTER*

Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC 29425, USA

1.1 Introduction

In the following chapters, a complete description of the design, bioevaluation and development of modulators of polyamine metabolism is presented. There are numerous synthetic approaches to these inhibitors, and as such a comprehensive review of the chemical literature in this area is beyond the scope of this book. In this chapter, specific examples of synthetic approaches to nucleosides, analogs of the natural polyamines and other agents that affect polyamine metabolism are described. The reader should bear in mind that the literature is replete with alternative strategies for the synthesis of compounds described herein. However, the examples provided will allow the reader to appreciate the vast chemical diversity that is available to medicinal chemists working in the polyamine field.
1.2 Polyamine Metabolism as a Drug Target

The mammalian polyamine biosynthetic pathway is shown in Figure 1.1. Ornithine is converted to putrescine by the action of the enzyme ornithine decarboxylase (ODC). Mammalian ODC, a dimeric enzyme with a molecular weight of about 80,000, is a typical pyridoxal phosphate-requiring amino acid decarboxylase that has been studied quite extensively. ODC is known to be one of the control points in the polyamine biosynthetic pathway, producing a product that is committed to polyamine biosynthesis. The synthesis and degradation of ODC are controlled by a number of factors including degradation assisted by a specific ODC antizyme, a polyamine-induced protein that binds to ODC and promotes ubiquitin-independent degradation by the 26S proteasome. As a result, ODC has a functional half-life of about 10 min. Putrescine is next converted to spermidine via an aminopropyltransferase known as spermidine synthase, which requires decarboxylated S-adenosylmethionine as a co-substrate. A second closely related but distinct aminopropyltransferase, spermine synthase, then adds an additional aminopropyl group to spermidine to yield spermine, the longest polyamine occurring in mammalian systems. The by-product for the spermidine and spermine synthase reactions is 5'-methylthioadenosine (MTA), a potent product inhibitor for the aminopropyl transfer process. In mammalian systems, MTA is rapidly hydrolyzed by the enzyme MTA-phosphorylase, and the components are converted to adenosine and methionine via salvage pathways. The aminopropyl donor for both aminopropyltransferases is decarboxylated S-adenosylmethionine (dc-AdoMet), produced from S-adenosylmethionine (AdoMet) by S-adenosylmethionine decarboxylase (AdoMet-DC). AdoMet-DC, like ODC, is a highly regulated enzyme in mammalian cells, and also serves as a regulatory point in the pathway. However, unlike ODC, AdoMet-DC belongs to a class of pyruvoyl enzymes that do not require pyridoxal phosphate as a cofactor (see below).

Polyamine metabolism is tightly controlled by a combination of inducible enzymes and the import/export of cellular polyamines. In addition to the enzymes mentioned above, intracellular polyamine content is modulated by a pair of acetyltransferases. Spermidine in the cell nucleus is acetylated on the four-carbon end by spermidine-N8-acetyltransferase, possibly altering the compound’s binding affinity for DNA. A specific deacetylase can then reverse this enzymatic acetylation. Cytoplasmic spermidine and spermine serve as substrates for spermidine/spermine-N1-acetyltransferase (SSAT), resulting in acetylation on the three-carbon end of each molecule (Figure 1.1). The acetylated spermidine or spermine then acts as a substrate for acetylpolyamine oxidase (APAO), which catalyzes the formation of 3-acetamidopropionaldehyde and either putrescine or spermidine, respectively. Excess acetylated polyamines can also be exported from the cell via the polyamine transport system. More recently, a second polyamine oxidase, the inducible spermine oxidase (SMO) was discovered and characterized. Thus, SSAT, APAO and SMO together serve as a reverse route for the interconversion of polyamines. An additional mechanism for control of cellular polyamines is provided by the polyamine...