Deglutition or a swallow begins as a voluntary act in the oral cavity but proceeds autonomously in the pharynx and esophagus. Bilateral sequenced activation and inhibition of more than 25 pairs of muscles of mouth, pharynx, larynx, and esophagus is required during a swallow. A single swallow elicits peristalsis in the pharynx and esophagus along with relaxation of upper and lower esophageal sphincters. Multiple swallows, at closely spaced time intervals, demonstrate deglutitive inhibition; sphincters remain relaxed during the entire period, but only the last swallow elicits peristalsis. Laryngeal inlet closure or airway protection is very important during swallow. Upper part of the esophagus that includes upper esophageal sphincter is composed of skeletal muscles, middle esophagus is composed of a mixture of skeletal and smooth muscles, and lower esophagus, including lower esophageal sphincter, is composed of smooth muscles. Peristalsis progresses in seamless fashion, despite separate control mechanism, from the skeletal to smooth muscle esophagus. The esophagus’s circular and longitudinal muscle layers contract synchronously during peristalsis. Sphincters maintain continuous tone; neuromuscular mechanisms for tonic closure in the upper and lower esophageal sphincters are different. Lower esophageal sphincter transient relaxation, belching mechanism, regurgitation, vomiting, and reflux are mediated via the brain stem.
Motor Function of the Pharynx, Esophagus, and its Sphincters
Editors

D. Neil Granger, Louisiana State University Health Sciences Center-Shreveport

Joey P. Granger, University of Mississippi Medical Center

Physiology is a scientific discipline devoted to understanding the functions of the body. It addresses function at multiple levels, including molecular, cellular, organ, and system. An appreciation of the processes that occur at each level is necessary to understand function in health and the dysfunction associated with disease. Homeostasis and integration are fundamental principles of physiology that account for the relative constancy of organ processes and bodily function even in the face of substantial environmental changes. This constancy results from integrative, cooperative interactions of chemical and electrical signaling processes within and between cells, organs, and systems. This eBook series on the broad field of physiology covers the major organ systems from an integrative perspective that addresses the molecular and cellular processes that contribute to homeostasis. Material on pathophysiology is also included throughout the eBooks. The state-of-the-art treatises were produced by leading experts in the field of physiology. Each eBook includes stand-alone information and is intended to be of value to students, scientists, and clinicians in the biomedical sciences. Since physiological concepts are an ever-changing work-in-progress, each contributor will have the opportunity to make periodic updates of the covered material.

Published titles
(for future titles please see the Web site, www.morganclaypool.com/page/lifesci)
Motor Function of the Pharynx, Esophagus, and its Sphincters
Ravinder Mittal
www.morganclaypool.com

ISBN: 9781615043330 paperback
ISBN: 9781615043347 ebook

DOI: 10.4199/C00027ED1V01Y201103ISP016

INTEGRATED SYSTEMS PHYSIOLOGY: FROM MOLECULE TO FUNCTION TO DISEASE #16

Lecture #16

Series Editors: D. Neil Granger, LSU Health Sciences Center, and Joey P. Granger, University of Mississippi Medical Center

Series ISSN
ISSN 2154-560X print
ISSN 2154-5626 electronic
Motor Function of the Pharynx, Esophagus, and its Sphincters

Ravinder Mittal
University of California, San Diego
ABSTRACT

Deglutition or a swallow begins as a voluntary act in the oral cavity but proceeds autonomously in the pharynx and esophagus. Bilateral sequenced activation and inhibition of more than 25 pairs of muscles of mouth, pharynx, larynx, and esophagus is required during a swallow. A single swallow elicits peristalsis in the pharynx and esophagus along with relaxation of upper and lower esophageal sphincters. Multiple swallows, at closely spaced time intervals, demonstrate deglutitive inhibition; sphincters remain relaxed during the entire period, but only the last swallow elicits peristalsis. Laryngeal inlet closure or airway protection is very important during swallow. Upper part of the esophagus that includes upper esophageal sphincter is composed of skeletal muscles, middle esophagus is composed of a mixture of skeletal and smooth muscles, and lower esophagus, including lower esophageal sphincter, is composed of smooth muscles. Peristalsis progresses in seamless fashion, despite separate control mechanism, from the skeletal to smooth muscle esophagus. The esophagus’s circular and longitudinal muscle layers contract synchronously during peristalsis. Sphincters maintain continuous tone; neuromuscular mechanisms for tonic closure in the upper and lower esophageal sphincters are different. Lower esophageal sphincter transient relaxation, belching mechanism, regurgitation, vomiting, and reflux are mediated via the brain stem.

KEYWORDS

esophageal peristalsis, lower esophageal sphincter, upper esophageal sphincter, neural control of peristalsis, circular and longitudinal muscle coordination, eneteric nervous system, high resolution manometry, transient sphincter relaxation, achalasia esophagus, deglutition center, swallow program generator