HYPOXIA AND THE CIRCULATION

Edited by
Robert C. Roach
Peter D. Wagner
and
Peter H. Hackett

ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY
Volume 618

Springer
HYPOXIA AND THE CIRCULATION
Recent Volumes in this Series

Volume 611
PETIDES FOR YOUTH
Edited by Susan Del Valle, Emanuel Escher, and William D. Lubell

Volume 612
RELAXIN AND RELATED PETIDES
Edited by Alexander I. Agoulnik

Volume 613
RECENT ADVANCES IN RETINAL DEGENERATION
Edited by Robert E. Anderson, Matthew M. LaVail, and Joe G. Hollyfield

Volume 614
OXYGEN TRANSPORT TO TISSUE XXIX
Edited by Kyung A. Kang, David K. Harrison, and Duane F. Bruley

Volume 615
PROGRAMMED CELL DEATH IN CANCER PROGRESSION AND THERAPY
Edited by Roya Khosravi-Far, and Eileen White

Volume 616
TRANSGENIC MICROALGAE AS GREEN CELL FACTORIES
Edited by Rosa León, Aurora Gaván, and Emilio Fernández

Volume 617
HORMONAL CARCINOGENESIS V
Edited by Jonathan J. Li

Volume 618
HYPOXIA AND THE CIRCULATION
Edited by Robert H. Roach, Peter D. Wagner, and Peter Hackett
HYPOXIA AND THE CIRCULATION

Edited by

Robert C. Roach
Altitude Research Center
University of Colorado at Denver and Health Sciences Center
Denver, Colorado, USA

Peter D. Wagner
Department of Medicine
University of California San Diego
La Jolla, California, USA

and

Peter H. Hackett
Altitude Research Center
University of Colorado at Denver and Health Sciences Center
Institute for Altitude Medicine
Telluride, Colorado, USA

Springer
PREFACE AND ACKNOWLEDGEMENTS

The International Hypoxia Symposia convenes every other year to bring together international experts from many fields to explore the state of the art in normal and pathophysiological responses to hypoxia. Representatives from 22 countries joined together in February 2007 for four days of intense scientific discourse in the dramatic mountain setting of Lake Louise, Canada.

The 15th International Hypoxia Symposium was a rewarding experience due to the outstanding faculty and the lively participation of our largest-ever group of participants. At this, our fifth meeting as the organizers, we were especially pleased that the Hypoxia Meetings continue to prosper. We remain always thankful for the kind and wise guidance of Charlie Houston, the originator of the Hypoxia meetings.

We strive to maintain a 30-year tradition of presenting a stimulating blend of clinical and basic science papers focused on hypoxia. Topics for 2007 included the risk of heart disease at high altitude, and the regulation of stroke volume and coronary blood flow. Also covered were metabolic, cognitive and vascular consequences of intermittent hypoxia, vascular remodeling in different vascular beds, lung fluid movement in hypoxia, new work on globins, including neuroglobin, myoglobin and genetic regulation of hemoglobin mass. Hypoxic responses in insects and the hypoxic skeletal muscle rounded out the regular sessions. We also had tributes to the 2007 Hypoxia Honoree, Professor James Milledge, and a special tribute to our late friend, Dr. Carlos “Choclo” Monge Cassinelli.

The abstracts from the 2007 meeting were published in High Altitude Medicine & Biology Dec 2006, Vol. 7, No. 4: 319-350. Late abstracts are presented in the last chapter of this volume.

We hope that this collection of papers especially prepared for this volume allows us to share with a broader audience some of the intellectual excitement that embodies the spirit of the Hypoxia meetings.

In 2007 we had the generous support of a number of organizations and individuals, including the U.S. Army Research and Development Command, The White Mountain Research Station, the John Sutton Fund from McMaster University, and our International Advisory Committee. At the meeting we were greatly helped by Barbara Lommen, Paige Sheen, Kelly Brown, Gene and Rosann McCullough and Andy Subudhi who each made a tremendous effort to make every delegate feel at home, and to make the meeting go very smoothly.

Please join us by the light of the full moon in February 2009 at the Chateau Lake Louise, Lake Louise, Alberta, Canada for the 16th International Hypoxia Symposium.

(www.hypoxia.net)
CONTENTS

THE HEART AT HIGH ALTITUDE
1. Risk of Cardiovascular Events During Mountain Activities 1
 Martin Burtscher

2. Biventricular Function at High Altitude: Implications for
 Regulation of Stroke Volume in Chronic Hypoxia 13
 Simon R. Gibbs

3. Control of Coronary Blood Flow During Hypoxemia 25
 Johnathan D. Tune

VAScular, METABOLIC AND COGnitive EFFECTS OF
INtermittent Hypoxia
4. Metabolic Consequences of Intermittent Hypoxia 41
 Christopher P. O’Donnell

5. Intermittent Hypoxia and Cognitive Function: Implications from
 Chronic Animal Models 51
 Barry W. Row

6. Vascular Consequences of Intermittent Hypoxia 69
 Barbara J. Morgan

HYPOXIA-INDUCED VASCULAR REMODELING AND HY-
PERTENSION
7. Angiotensin-Induced Hypoxia in the Kidney: Functional and
 Structural Changes of the Renal Circulation 85
 Masaomi Nangaku, Reiko Inagi, Toshio Miyata,
 Toshiro Fujita
8. Role of Reactive Oxygen Species in Chronic Hypoxia-Induced Pulmonary Hypertension and Vascular Remodeling
 Eva Nozik-Grayck and Kurt R. Stenmark

9. Hypoxia and Placental Remodeling
 Judith E. Cartwright, Rosemary J. Keogh, and Martha C. Tissot van Patot

LUNG FLUID MOVEMENT IN HYPOXIA
10. Epithelial Sodium Channels in the Adult Lung - Important Modulators of Pulmonary Health and Disease
 Ian C. Davis and Sadis Matalon

11. Lung Interstitial Pressure and Structure in Acute Hypoxia
 Giuseppe Miserocchi

12. Hypoxic Inhibition of Alveolar Fluid Reabsorption
 Laura A. Dada and Jacob I. Sznajder

NEW THOUGHTS ABOUT GLOBINS
13. Regulation and Role of Neuroglobin and Cytoglobin Under Hypoxia
 Thorsten Burmester, Frank Gerlach, and Thomas Hankeln

14. Molecular Insights Into the Functional Role of Myoglobin
 Daniel J. Garry and Pradeep P.A. Mammen

15. Genetic Mechanisms Underlying Regulation of Hemoglobin Mass
 Neeraj Agarwal, Victor R. Gordeuk, and Josef T. Prchal

HYPOXIC RESPONSES: INSIGHTS FROM INSECTS
16. Control of the Respiratory Patterns in Insects
 Timothy J. Bradley
17. Effects of Insect Body Size on Tracheal Structure and Function
Scott D. Kirkton

THE WORKING SKELETAL MUSCLE
18. The Role of HIF-1 in Hypoxic Response in the Skeletal Muscle
Steven Mason and Randall S. Johnson

19. Gene Expression in Working Skeletal Muscle
Hans Hoppeler, Stephan Klossner, and Martin Fluck

20. The Limits of Human Endurance: What is the Greatest Endurance Performance of All Time? Which Factors Regulate Performance at Extreme Altitude?
Timothy David Noakes

THE PEOPLE OF HYPOXIA
Annabel Nikol

22. Exploring Mountain Medicine and Physiology
James S. Milledge

23. Carlos Monge Cassinelli: A Portrait
Fabiola Leon-Velarde S. and Jean-Paul Richalet

LATE ABSTRACTS

SUBJECT INDEX
AUTHORS FOR CORRESPONDENCE

Timothy Bradley
Dept. of Ecology & Evolutionary Biology,
University of California, Irvine, CA, USA
tbradley@uci.edu
(Chapter 16)

Thorsten Burmester
Institute of Zoology
University of Hamburg
Hamburg, Germany
thorsten.burmester@uni-hamburg.de
(Chapter 13)

Martin Burtscher
Department of Sport Science
Medical Section
University of Innsbruck
Innsbruck, Austria
Martin.Burtscher@uibk.ac.at
(Chapter 1)

Judith Cartwright
Division of Basic Medical Sciences,
St. George’s, University of London
London, UK
jcartwri@sgul.ac.uk
(Chapter 9)

Laura Dada
Pulmonary and Critical Care Medicine,
Feinberg School of Medicine,
Northwestern Univ, Chicago, IL, USA
lauradada@northwestern.edu
(Chapter 12)

Daniel Garry
Division of Molecular Cardiology,
UT Southwestern Medical Center
Dallas, TX, USA
Daniel.Garry@UTSouthwestern.edu
(Chapter 14)

Simon Gibbs
Senior Lecturer in Cardiology
National Heart and Lung Institute at
Imperial College, London, UK
simongibbs@compuserve.com
(Chapter 2)

Hans Hoppeler
Department of Anatomy
University of Bern
Bern, Switzerland
hoppeler@ana.unibe.ch
(Chapter 19)

Randy Johnson
Molecular Biology Section
Division of Biological Sciences
UC San Diego San Diego, CA, USA
rjohnson@biomail.ucsd.edu
(Chapter 18)

Scott Kirkton
Department of Biological Sciences
Union College,
Schenectady, NY, USA
scott.kirkton@gmail.com
(Chapter 17)

Sadis Matalon
Alice McNeal Professor of
Anesthesiology
University of Alabama at Birmingham
Birmingham, AL, USA
sadis@uab.edu;
(Chapter 10)

James Milledge
Northwick Park Hospital
137 Highfield Way, London, UK
jim@medex.org.uk
(Chapter 22)
Giuseppe Miserocchi
Department of Experimental Medicine
Università di Milano-Bicocca
Via Cadore 48, Monza, Italy
giuseppe.miserocchi@unimib.it
(Chapter 11)

Barbara Morgan
Dept of Orthopedics and Rehabilitation
University of Wisconsin-Madison
Madison, Wisconsin, USA
morgan@surgery.wisc.edu
(Chapter 6)

Masaomi Nangaku
Division of Nephrology and Endocrinology
University of Tokyo School of Medicine, Tokyo, Japan
mnangaku-tyk@umin.ac.jp
(Chapter 7)

Annabel Nickol
Oxford Centre for Respiratory Medicine, Churchill Hospital
Headington, Oxford, UK
annabel@medex.org.uk
(Chapter 21)

Timothy Noakes
Department of Human Biology
Sports Science Institute of South Africa
Boundary Road
Newlands, 7925, South Africa
timothy.noakes@uct.ac.za
(Chapter 20)

Christopher O’Donnell
Division of Pulmonary Allergy and Critical Care Medicine
University of Pittsburgh, School of Medicine, Pittsburg, PA, USA
o’donnellcp@upmc.edu
(Chapter 4)

Joe Prchal
University of Utah,
Salt Lake City, UT, USA
josef.prchal@hcs.utah.edu
(Chapter 15)

Jean-Paul Richealet
ARPE
Université Paris 13, Bobigny, France
richalet@smbh.univ-paris13.fr
(Chapter 23)

Barry Row
Kosair Children’s Hospital Research Institute, Department of Pediatrics,
University of Louisville Medical School, USA
b0row001@gwise.louisville.edu
(Chapter 5)

Kurt Stenmark
Pediatric Critical Care Medicine
University of Colorado
kurt.stenmark@uchsc.edu
(Chapter 8)

Jonathan Tune
Department of Cellular and Integrative Physiology
Indiana University School of Medicine, Indianapolis Indiana
jtune@iupui.edu
(Chapter 3)

Contact information for the authors of the late abstracts are within the abstracts in the Late Abstracts section at the end of the book.
Chapter 1

RISK OF CARDIOVASCULAR EVENTS DURING MOUNTAIN ACTIVITIES

Martin Burtscher
Department of Sport Science, Medical Section, University of Innsbruck, Austria.

Abstract: Sudden cardiac death (SCD) is the major cause of fatalities in males over 34 years of age during hiking or downhill skiing in the mountains. The main goal of the present study was the identification of risk factors and triggers associated with SCDs during these mountain activities. Besides recording individual circumstances associated with SCD, a case-control study was performed comparing the risk factor profiles of 247 males over the age of 34 who suffered SCD during mountain hiking or downhill skiing with those of 741 matched controls. The SCD risk was greatest on the first day at altitude but altitude per se and the duration of activity did not appear to markedly modify this risk. In contrast, the longer the time from the last food and fluid intake during hiking, the higher was the SCD risk. Early cardio-pulmonary resuscitation was started in 33 % of skiers and in 14 % of hikers after occurrence of unconsciousness. Hikers who died suddenly during mountain hiking were much more likely to have had a prior myocardial infarction (MI) (17 % vs. 0.9 %), known coronary artery disease (CAD) without prior MI (17 % vs. 4 %), diabetes (6 % vs. 1 %), hypercholesterolemia (54 % vs. 20 %), and were also less engaged in regular mountaineering activities (31 % vs. 58 %) compared with hikers from the control group (all P < 0.001). Skiers who suffered SCD had much more frequently a prior MI (41 % vs. 1.5 %), hypertension (50 % vs. 17 %), known CAD without prior MI (9 % vs. 3 %), and were less engaged in regular strenuous exercise (4 % vs. 15 %) when compared to controls (all P < 0.05). These findings enable identification of skiers and hikers at increased SCD-risk and recommendation of preventive measures, e.g. pharmacological interventions and adaptation to specific mountain activities. They also underline the need for intensified cardio-pulmonary resuscitation training for all mountaineers.

Key Words: sudden cardiac death, downhill skiing, mountain hiking, exercise, regular physical activity

INTRODUCTION

The Alps comprise the largest and most popular sports region in Europe. Austria accounts for almost one third of the 180,000 km² of mountainous area. In Austria alone, each year more than 10 million persons from practically every country in the world are

Hypoxia and the Circulation, edited by R.C. Roach et al.
involved in one of the many mountain activities (downhill skiing, mountain hiking, ski-touring, rock climbing, ice-climbing, snow boarding, mountain biking, paragliding, etc.). About 85 percent of these people are downhill skiers and/or mountain hikers (4). Whereas mountain sports activities can undoubtedly contribute to fitness and longevity, they are also combined with a relatively high risk of death (2, 6). In Austria there are about 300 fatalities during mountain sports annually. About 30 % of these deaths are non-traumatic deaths, mostly sudden cardiac deaths (SCDs) (4). Based on accumulating reports on fatal cardiac events in hikers and skiers during the peak vacation periods, the impression arises that downhill skiing, like mountain hiking in summer, is associated with a particularly high risk of SCD. Numerous studies have estimated the frequency of SCDs to the general public and during vigorous exercise (10, 15, 24, 25, 29, 35). However, relatively little data are available on SCDs which occur during hiking or downhill skiing (7, 8).

For this reason, the main objectives of the present paper are the estimation of the SCD-risk during downhill skiing and mountain hiking and the identification of main risk groups and risk factors associated with SCD.

METHODS

The recording of fatalities during mountain sports activities in Austria, the estimation of the respective population at risk, and the case-control analyses for the determination of risk factors have recently been described elsewhere (3, 4) and will only be presented here briefly.

Fatalities during mountain sports activities and diagnosis of deaths

All fatalities during mountain sports activities in Austria within a nine year period were recorded by qualified alpinists with para-medical training. Data encompassed characteristics of the mountaineers (age, sex, nationality, the type of mountain sport practiced, etc.), the circumstances of the fatality, the doctor’s diagnosis and further details like terrain, altitude, and weather conditions. The diagnosis of “sudden cardiac death” has been made by the emergency physician, by the doctor in the hospital and sometimes additionally on the basis of the results of an autopsy which was performed in about 10% of all cases.

Sudden cardiac death is defined as unexpected, non-traumatic death in persons with or without pre-existing disease who die within 1 hour of the onset of symptoms with exclusion of CVA and PE (9, 20).

The population at risk

The total number of hikers and skiers is based on a representative Austrian-wide survey which has been carried out to determine the number of persons involved in individual mountain sports activities, differentiation according to age and sex, and the frequency of involvement in (alpine) sports (26), on data collected among a representa-
tive sample of hikers and skiers in Austria (13), and on microcensus (1, 16).

The case-control-study

Cases: All deaths which occurred during mountain hiking and downhill skiing during a nine year period in Austria were recorded. Males > 34 years of age who suffered SCD during mountain hiking or downhill skiing and who were residents of Austria or Germany were eligible for inclusion in the study. Rare cases in which cardiovascular processes such as intracerebral hemorrhage, pulmonary embolism and dissecting aortic aneurysm were demonstrated were excluded. Out of all recorded cases (n = 518) with SCD 405 fulfilled the inclusion criteria. For data collection on risk factor profiles, addresses of spouses or close relatives of hikers and skiers who suffered sudden death were available in 314 cases. 247 questionnaires (79 %) were returned and after subsequent telephone interviews for data completion, all of them were included for analyses.

Controls: Control subjects were recruited from the population of male hikers and skiers from Austria and Germany. Within 2 consecutive summer and winter seasons, hikers and skiers were interviewed with a similar standardised questionnaire as used for cases. Inquiries were carried out on 40 frequented mountain paths and huts and in 3 Austrian ski resorts of the western part of the Austrian Alps. There, data from all male hikers and skiers over the age of 34 were recorded successively for a certain period in the morning and the afternoon. Less than 10 % refused the inquiry. Afterwards, controls were matched to the cases in terms of age, nationality, type and frequency of mountain sports activities. Three controls (n = 741) were selected for each case.

Data collection: The questionnaire employed was tested in a preceding pilot study and was revised to improve clarity and facilitate statistical analysis. This questionnaire covered demographic variables, cardiovascular risk factors, medical history, physical activity, and additionally, individual conditions at the day of death like nutrition, start of the sports activity, etc., and symptoms and circumstances of sudden death and information on resuscitation for cases. Trained interviewers were responsible for the data collections. Habitual physical activity was classified as mild to moderate and strenuous activity. Mild to moderate activity was defined as needing up to 5 metabolic equivalents (METs; 1 MET = 3.5 ml/kg/min oxygen uptake) and strenuous activities of 6 or more METs (35).

Statistics

Data are mainly presented as frequencies. Due to the study design the primary statistical approach was a case-control analysis between hikers who died suddenly during mountain hiking or downhill skiing and randomly selected controls. Differences in cardiovascular risk factors, physical activity and demographic characteristics were evaluated univariately by Mann-Whitney, Chi-square or Fisher’s exact tests. Logistic-regression analysis was used to estimate adjusted odds ratios and their 95% confidence intervals for cardiac death outcome. All P values were two-tailed and values below 0.05 were considered to indicate statistical significance.
RESULTS

Frequency of SCDs during a 9 year observation period

The age and gender-related numbers of SCDs during mountain hiking and downhill skiing within a 9 year period in Austria are shown in Table 1. Male hikers and skiers over the age of 40 comprise about 90 percent of all SCDs. SCDs are rare in females and young males. However, young females seem to have relatively frequent SCDs during skiing as compared with females over 40 years of age. Considering the age distribution of the male population at risk, a steep increase of the SCD risk with increasing age becomes obvious (Fig.1).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Hikers</th>
<th>Skiers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
<td>Females</td>
</tr>
<tr>
<td>< 20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21-40</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>41-60</td>
<td>166</td>
<td>12</td>
</tr>
<tr>
<td>> 60</td>
<td>192</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>372</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 1. Age- and gender-dependent numbers of sudden cardiac deaths (SCDs) during hiking and skiing in the Austrian Alps within a 9 year observation period

Figure 1. Age-specific proportions of SCDs in male mountain hikers and downhill skiers over the age of 34.