Heino Kienapfel
Klaus-Dieter Kühn
(Eds.)

The Infected Implant
This book and the basic Symposium in Potsdam, November 21–22, 2008 have been sponsored by Heraeus Medical GmbH, Wehrheim.

Cover image: Scanning electron micrograph of *Staphylococcus aureus* biofilm adhered to a metal implant surface. Taken by Dr. Llinos G. Harris, Medical Microbiology, Institute of Life Science, School of Medicine, Swansea University, Swansea, SA2 8PP, Wales, UK.

ISBN 978-3-540-92835-5 Springer Medizin Verlag Heidelberg

Bibliografische Information der Deutschen Bibliothek
The Deutsche Bibliothek lists this publication in Deutsche Nationalbibliographie; detailed bibliographic data is available in the internet at http://dnb.ddb.de.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer Medizin Verlag
springer.com
© Springer Medizin Verlag Heidelberg 2009

The use of general descriptive names, registered names, trademarks, etc. in this publications does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Planning: Hanna Hensler-Fritton, Heidelberg
Projectmanagement: Diana Kraplow, Heidelberg
Copy-Editing: Hilger Verlagservice, Heidelberg
Design: deblik Berlin
Typesetting: TypoStudio Tobias Schaedla, Heidelberg
Printer: Stürtz GmbH, Würzburg

SPIN: 12586806

Printed on acid free paper 18/5135/DK – 5 4 3 2 1 0
Foreword

Infections following joint arthroplasty are a severe complication for each patient with a negative impact on their quality of life. Infections are also a challenge for the surgeons, microbiologists and hospitals involved. Finally, due to their financial impact infections will increasingly be monitored and controlled, as they have a direct influence on how hospitals will be reimbursed; as such, preventing infections has been identified as a source of cost reduction. Furthermore, the issue of infection needs to be a standard part of any outcome measurement – be it based on information obtained from registers or from patient reported outcome studies / questionnaires. The goal of the 2nd International Arthroplasty Symposium – The Infected Implant of November 21–22, 2008 in Potsdam was to provide an expert update on the state of the art, with regard to the basic knowledge on and clinical treatment options for this patient group.

We would like to thank all the presenters for their contributions to this book. Among the topics you will find valuable information on: basic science, epidemiology, microbiology, documentation in orthopaedic surgery and on, surgical as well as local and systemic drug therapy algorithms.

We hope that this book will help us all to further improve the treatment quality and outcome for our patients.

Klaus-Dieter Kühn
Heino Kienapfel
Table of Contents

1 The Importance of European Registers in Respect to Infections in Arthroplasty 1
 Á. Zahár

2 Increasing Incidence of Infected THA in Norway Despite Improved Antibiotic Prophylaxis 3
 L.B. Engesæter
 Introduction .. 3
 Methods ... 3
 Results ... 4
 Discussion ... 5
 Conclusions .. 5
 References ... 6

3 Update from the Swedish Arthroplasty Registers with Special Reference to Infections 7
 A. Stefánsdóttir, J. Kärrholm, O. Robertsson
 Introduction .. 7
 Material ... 7
 Results ... 9
 Discussion ... 11
 Conclusion ... 11
 References ... 11

4 Status and Prospect of an European Arthroplasty Register (EAR) ... 13
 S. Gaiser
 Introduction .. 13
 Possible Prospects for EAR and International Approaches to Arthroplasty Registers 13
 Conclusion ... 15
 References ... 15

5 The Infected Implant – Microbiology and Clinical Strategies ... 17
 I. Stockley
 Pathophysiology of Joint Infections 17
 Management of Prosthetic Joint Infection 17

6 Infection of Joint Prosthesis and Local Drug Delivery ... 19
 A. Görecki, I. Babiak
 Introduction .. 19
 Prevalence, Nature and Consequences of Periprosthetic Infection .. 19
 Diagnosis and Therapy of Periprosthetic Infection ... 20
 Local Antibiotic Delivery Systems 21
 Prophylactic Measures Against Colonization and Development of Biofilm 24
 References ... 25

7 Clinical Strategy for the Treatment of Deep Infection of Hip Arthroplasty 27
 D. Jahoda
 Single Antibiotic Therapy (Chronic Suppressive Therapy) .. 31
 Debridement and Rinse Lavage .. 31
 One-Stage Exchange ... 33
 Two-Stage Exchange .. 34
 Resection Arthroplasty ... 38
 Conclusions ... 39
 References ... 40

8 Infection after Total Knee Arthroplasty: Diagnosis, Management Strategies and Outcomes 43
 P.C.M. Verdonk, P. Vansintjian, R. Verdonk
 Introduction .. 43
 Materials and Methods 44
 Results/Clinical Studies 44
 Discussion ... 55
 Conclusion ... 57
 References ... 57

9 Spacer Management in Periprosthetic Infections ... 61
 C. Eberhardt
 Introduction .. 61
 Non-Articulating Spacers 62
 Articulating Spacers .. 64
 Concerns ... 66
 Advantages of Mobile Spacers 68
Table of Contents

10 Observational Study of Bone Cement with Two Antibiotics in Revision Arthroplasty of Knee and Hip 73
 J. Sauer
 Introduction .. 73
 Methods .. 74
 Results ... 75
 Discussion ... 78
 Literature .. 81

11 Treatment of an Infected Joint Prosthesis: Difficult Challenge for an Orthopedist Surgeon 83
 T. Bauer, A. Lortat-Jacob

12 Low-Grade Infection and Multiresistant Gram-Positive Cocci .. 85
 R. Schaumann, A.C. Rodloff
 Introduction .. 85
 Diagnosis of Low-Grade Infections 85
 Isolated Microorganisms 86
 Emergence of Resistance 86
 Biofilm .. 87
 Treatment of Low-Grade Infections 87
 References .. 88

13 Antibiotic Strategies in Septic Arthroplasties 91
 J. Cordero-Ampuero
 Introduction .. 91
 Biomaterials Reduce Immune System
 Efficiency .. 91
 Biofilm .. 92
 Intracellular Bacteria 93
 Future .. 95
 References .. 95

14 Introduction: Revision Cemented Versus Uncemented 97
 P. Lubinus

15 Cemented revision THA 99
 L. Luňáček
 Introduction .. 99
 Material and Methods 99

16 Pro Uncemented Revision 105
 M. Krbec
 Introduction .. 105
 Material and Methods 105
 Results .. 106
 Discussion ... 108
 Conclusion ... 110
 References .. 111

17 The Infected Implant: Revision One Stage Versus Two Stage – Introduction To Crossfire Session 113
 E. Meani, P. Trezza
 Septic Hip Prosthesis – One-Stage Revision 114
 Septic Hip Prosthesis – Two-Stage Revision:
 Reasons of a Choice 116
 Conclusions ... 116
 References .. 117

18 One Stage Revision – Favourite Option? 119
 G. von Foerster, L. Frommelt
 Introduction .. 119
 Method of One-Staged Revision 119
 Technique of One-Staged Revision
 Including Pre-Operative Precautions and
 Postoperative Nursery 121
 Antimicrobial Agents in One-Staged Revision 124
 Advantages of One-Staged Revision 124
 Limits of One-Staged Revision 124
 Discussion ... 125
 Conclusion ... 125
 References .. 126

19 Advantages of Two-Stage Revision Arthroplasty 127
 F. Randelli, A. Aliprandi, L. Banci,
 L. Sconfienza, F. Sardanelli
 Background .. 127
 Total Hip Replacement Deep Infection
 Management .. 129
 Conclusion ... 132
 References .. 132

Subject Index ... 135
List of Contributors

Aliprandi, Alberto
Radiology Department, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milano, ITALY

Babiak, Ireneusz
Department of Orthopaedics and Traumatology of the Locomotor System Medical University of Warsaw, POLAND

Banci, Lorenzo
Hip Department – Centro di Chirurgia dell’Anca, Via Lusardi 5, 20122 Milano, ITALY

Bauer, Thomas
Department of Orthopedic Surgery, Ambroise Paré University Hospital, 9 Avenue Charles de Gaulle, 92100 Boulogne, FRANCE

Cordero-Ampuero, José
University Hospital La Princesa, Universidad Autónoma de Madrid, c/Océano Antártico 41, Tres Cantos, 28760 Madrid, SPAIN

Eberhardt, Christian
University Hospital Frankfurt, Department Orthopedic Surgery, Marienburgstraße 2, 60528 Frankfurt, GERMANY

Engesæter, Lars B.
Norwegian Arthroplasty Register, University of Bergen, Department of Orthopedic Surgery, Möllendalsbakken 11, 5021 Bergen, NORWAY

Foerster, Götz von
Tabea-Krankenhaus, Artemed-Kliniken GmbH, Kösterbergstraße 32, 22587 Hamburg, GERMANY

Frommelt, Lars
ENDO-Klinik Hamburg – Service for Infectious Diseases, Clinical Microbiology and Infection Control, Holstenstraße 2, 22767 Hamburg, GERMANY

Gaiser, Sebastian
Heraeus Medical GmbH, Philipp-Reis-Straße 8/13, 61273 Wehrheim, GERMANY

Górecki, Andrzej
Department of Orthopaedics and Traumatology of the Locomotor System Medical University of Warsaw, POLAND

Jahoda, David
Department of Orthopaedics, 1st Faculty of Medicine, Teaching Hospital Motol, V Úvalu 84, 15006 Prague 5, CZECH REPUBLIC

Kärrholm, Johan
Department of Orthopaedics, Sahlgrenska University Hospital, PO Box 100, 40530 Gothenburg, SWEDEN

Krbec, Martin
Orthopaedic Dpt. of University Hospital, Masaryk University, Jihlavská 20, 62500 Brno, CZECH REPUBLIC

Lortat-Jacob, Alain
Department of Orthopedic Surgery, Ambroise Paré University Hospital, 9 Avenue Charles de Gaulle, 92100 Boulogne, FRANCE

Lubinus, Philipp
Special Department Endoprothetics, Lubinus Clinicum, Steenbeker Weg 25, 24106 Kiel, GERMANY

Luňáček, Libor
Orthopaedic and Traumatological Clinic, Charles University, Celetná 13, 11000 Praha 1, CZECH REPUBLIC

Meani, Enzo
Osteoarticular Infection Surgery Unit, Istituto Ortopedico Gaetano Pini, Piazza Ferrari Andrea 1, 20122 Milano, ITALY

Randelli, Filippo
Hip Department – Centro di Chirurgia dell’Anca, Via Lusardi 5, 20122 Milano, ITALY
Robertsson, Otto
Department of Orthopaedics, Lund University Hospital, 22185 Lund, SWEDEN

Rodloff, Arne C.
Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Liebigstraße 24, 04103 Leipzig, GERMANY

Sardanelli, Francesco
Radiology Department, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milano, ITALY

Sauer, Joachim
DP-Medsystems AG, Tulpenstr. 26, 82110 Germering, GERMANY

Schaumann, Reiner
Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Liebigstraße 24, 04103 Leipzig, GERMANY

Sconfienza, Luca
Radiology Department, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milano, ITALY

Stefánsdóttir, Anna
Department of Orthopaedics, Lund University Hospital, 22185 Lund, SWEDEN

Stockley, Ian
Department for Orthopaedics, Northern General Hospital, Herries Road, Sheffield, South Yorkshire, S5 7AU, UNITED KINGDOM

Trezza, Paolo
Osteoarticular Infection Surgery Unit, Istituto Ortopedico Gaetano Pini, Piazza Ferrari Andrea 1, 20122 Milano, ITALY

Vansintjan, Pieter
Department of Orthopaedic Surgery, Stedelijk Ziekenhuis, Brugsesteenweg 90, 8800 Roeselare, BELGIUM

Verdonk, Peter C.M.
Department of Orthopaedic Surgery, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, BELGIUM

Verdonk, René
Department of Orthopaedic Surgery, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, BELGIUM

Zahár, Ákos
Semmelweis University, Department of Orthopaedics, Karolina út 27, 1113 Budapest XI, HUNGARY
In surgery, especially in orthopaedic surgery, quality control is one of the main tools to gain feedback of the surgeon’s activity for healthcare professionals. The results from our daily activity, the outcome of the surgical procedures are widely published in the scientific literature and in on-line versions of our peer-reviewed journals. Statistical analysis of the data from the scientific works and meta-analyses created from them are major tools to have information of our surgical activity, or to get knowledge about the quality of orthopaedic devices we are using.

The legal aspect of documentation is nowadays obvious for every practicing surgeon. The accurate documentation of each and every patient who underwent a procedure is essential in legal affairs. Also national healthcare systems use the data of our scientific or statistical databases, that is why the financial impact of documentation is enormous.

Establishing arthroplasty registers in the late 1970’s – the first ever was the Swedish Knee Arthroplasty Register in 1975 – had also the goal to improve quality of orthopaedic surgical activity in order to rule out implants with clinically poor results. The output was that the revision burden of the implants – both hip and knee – decreased significantly. The publication of the results from the Swedish Arthroplasty Register could be widely used in all over the world. Another result of the Swedish model was that other countries, first of all Scandinavian countries followed the Swedish example.

Recent publications of the Swedish Arthroplasty Register report that the cemented technique is the dominating type of fixation throughout Sweden. Infection prophylaxis is achieved in both ways: systemic and local application of antibiotics is widely used. The septic revision rate after total hip arthroplasty (THA) is about 0.6%, which is an enormous improvement compared to the data of the past decade. Furthermore, the colleagues from Sweden report that MRSA is fortunately not yet an issue in Scandinavia.

Norway started its register in 1987, it was a surveillance tool to identify inferior implants as early as possible – as we can read in the Mission Statement of the Norwegian Arthroplasty Register. Colleagues from Norway could detect products like PMMA bone cements with poor survival rates. So the products with high failure rates could be eliminated from the national market. Nowadays the Norwegian group of register professionals has gained the title National Centre of Excellence – 98% of all THA are reported in the Register.

The data from Norway reveal that the number of uncemented THA decreases, while hybrid tech-
1.

When bone cement without antibiotics disappeared in the last 5 years, local and systemic antibiotic prophylaxis is used in Norway, but systemic antibiotic is administered on a four-times-a-day basis for 24 hours. Increasing number of revisions due to infection are reported in the Norwegian Register, the true causes are being explained.

The financial impact of the Scandinavian registers was that the expenses for the establishment of a national register were compared to those of avoidable revision surgeries. Based upon these findings, further financial support could be achieved by the healthcare systems, as experienced recently in Romania.

The Scandinavian experience made it possible to build up further arthroplasty registers in the European countries. One of the first non-Scandinavian countries was Hungary, which joined the family of national registers in 1998. The success in the funding of a nation-wide register is highly dependent from its strong regulations, compact and effective organisation. The comparability of the national results is achieved by a minimum dataset of arthroplasty registers, which was introduced by the European Arthroplasty Register (EAR).

The financial support of each national arthroplasty register varies from country to country. There is a wide range between the amounts depending on the engagement of the national healthcare system, ministry of health and other official federal or governmental institutions. There are countries, where the government supports the work of registers, like Austria, Romania, and there are other countries, where the financial support is an obligation of the national orthopaedic society together with manufacturers of orthopaedic implants.

An effective system on a country level is only achieved if all orthopaedic and trauma centres are involved, sufficient financial support is secured, and the healthcare system is highly dedicated to obtain data from the national register.

The European Federation of Orthopaedic and Trauma Surgery (EFORT) started the EAR project in 2002 with the goal to collect data from the national registers in the EU, in order to improve the quality of orthopaedic implants throughout Europe. Co-operation agreements with all national arthroplasty registers make it possible to achieve the highest level of osteoarthritis treatment. The EAR is about to introduce new regulatory requirements for implants in the EU.

The publication raising from the data collected in arthroplasty registers are available in annual reports (Sweden, Norway, Denmark) or in peer-reviewed journals. They are available for everybody in the internet portals of each national register.

Treatment guidelines also belong to the topic of documentation, even though if they suggest a sequence of diagnostic and therapeutic tools. The algorithm of managing periprosthetic infections is very useful in daily practice, even if the orthopaedic surgeon has to deal with highly demanding cases. Standardisation of treatment options in form of a defined algorithm helps to improve the quality of treatment and to avoid failures. The publications in peer-reviewed journals are only recommendations, while nation-wide regulations like treatment guidelines are mandatory for healthcare professionals.

In a well-defined treatment algorithm we can choose the proper option from the different solutions: debridement without exchange, one-stage exchange, two-stage revision with or without antibiotic spacer etc. Recurrence of the infection can be kept on a very low rate (under 5%) when we follow the instructions of the Swiss colleagues (The Liestal Algorithm).

Documentation and to share information in the cases of infected implants are of great importance. The distribution of causative agents, like *Staphylococcus aureus* and *Coagulase-negative Staphylococci*, are highly interesting data for both infectologists and orthopaedic surgeons. Polyresistant strains like MRSE and MRSA are also reported in arthroplasty registers in order to be prepared for the increasing number of cases. The results of local and systemic antibiotic prophylaxis are well known from the annual reports of Sweden and Norway. Publications of novel treatment options, like new drugs in chemotherapy, local application of antibiotics or improved antimicrobial coatings, belong to the topics of documentation, too.
Increasing Incidence of Infected THA in Norway Despite Improved Antibiotic Prophylaxis

Lars B. Engesaeter

Introduction

In orthopaedic implant surgery, infection is rare but devastating for the patient and costly for society. With improved surgical techniques, stricter pre- and perioperative routines and antibiotic prophylaxis, the infection rate after primary total hip arthroplasty (THA) has been reduced from 5–10% in the late 1960s to around 1% today (Lidgren 2001; Lidgren et al. 2003; Zimmerli et al. 2004). In previous papers based on the Norwegian Arthroplasty Register, a lower revision rate of primary THAs was found when antibiotic prophylaxis was given both systemically and in the bone cement compared to systemically only, in bone cement only, or compared to no antibiotic prophylaxis at all (Espehaug et al. 1997; Engesaeter et al. 2006). The importance of systemic antibiotic prophylaxis in primary THA surgery seems to be well accepted; however, the benefits of antibiotic prophylaxis in bone cement remain in question (van de Belt et al. 2001).

Based on the data in the Norwegian Arthroplasty Register (NAR), we report in this paper on the use of antibiotic prophylaxis in primary THA and the incidence of reported revisions for infection after primary THAs in the period 1987–2007.

Methods

The Norwegian Arthroplasty Register is a nationwide registry, established in September 1987. Each THA performed in Norway is reported individually by the surgeon by completing a standard form (Havelin et al. 2000). Information on the form includes the identity of the patient, the date of the operation, indication for surgery, type of prosthesis, type of cement, operation time, type of operating theatre, and, if systemic antibiotic prophylaxis was used, the type, duration and dosage. Revision of the implant is defined as surgical removal or change of the whole or part of the implant. Using the unique identification number assigned to each inhabitant of Norway, the information from the primary THA was linked to any eventual revision in the registry.

Survival analyses were performed using the Kaplan-Meier method and the Cox regression model. Relative revision risks (RR) are presented with adjustment for differences among groups in gender, age, cement brand, type of systemic antibiotic prophylaxis, prosthesis type, type of operating theatre, and duration of the operation. The risk for revision due to deep infection was calculated with time stratified into four 5-year periods. Patients who died or emigrated during the follow-up pe-
Chapter 2 · Increasing Incidence of Infected THA in Norway Despite Improved Antibiotic Prophylaxis

period were identified from files provided by Statistics Norway. The follow-up time for the prostheses in these patients were censored at the date of death or emigration.

Results

Since the start of the Register in September 1987 to the end of December 2007, 110,985 primary THAs have been reported to the NAR. In 1987, 82.8% of patients with primary THA received systemic antibiotic prophylaxis, and 99.5% in 2007. Antibiotics in the cement were used in 36% of the operations in 1987 and in 100% in 2007. We have previously shown that the lowest revision risk was found when antibiotic prophylaxis was given both systemically and in the cement (Engesaeter et al. 2003). Compared to this combined regime, patients who received antibiotic prophylaxis only systemically had a revision rate 1.4 times higher with all reasons for revision as endpoint (p = 0.001), 1.3 times higher with aseptic loosening (p = 0.02) and 1.8 times higher with infection as endpoint in the analyses (p = 0.01) (Fig. 2.1).

For the combined antibiotic regime (antibiotic both systemically and in cement), the results were better if antibiotics were administered four times on the day of surgery compared to once (p < 0.001), twice (p < 0.001) or three times (p = 0.02) (Fig. 2.2). In 2007, systemic antibiotic prophylaxis was given four times on the day of surgery in 77% of the primary THAs compared to 30% for the whole period.

For the whole period 1987–2007, 110,882 primary THAs were reported of which 706 were revised due to infection. This number of primary revisions due to infection is increasing. Compared to the primary THAs implanted in 1987–1992, the risk for revision due to infection was 1.3 times higher for those implanted in 1993–1997 (p = 0.05), 1.4 times higher for 1998–2002 (p = 0.01), and 2.7 times higher for 2003–2007 (p = <0.001). This increase in revisions due to infection was also found when analysing separately for cemented THAs and was even more pronounced for uncemented THAs.

Fig. 2.1a–c. Cox-adjusted survival curves with all reasons for revision (a), aseptic loosening (b) and infection (c) as endpoints for THAs with antibiotic prophylaxis systemically and in cement (SC), systemically only (S), in cement only (C), or no antibiotic prophylaxis (None)
Conclusions

The best results of primary THAs were obtained among those patients who received prophylactic antibiotic both in cement and systemically, and where the systemic antibiotic was given four times on the day of surgery. In the Norwegian Arthroplasty Register the number of reported revisions due to infection after primary THA is, nevertheless, increasing.

However, the explanation for the increase in reported infected THAs to the registry is not straightforward. The possibility that the increase is real can of course not be excluded, a finding also reported by Kurtz et al. (2008). Simultaneous changes in possible confounding factors have occurred, however. For example, in recent years low-grade infections of prostheses have been in focus, both for the orthopaedic surgeon and the microbiologist, with better diagnostics for these infections (Zimmerli and Ochsner 2003). In accordance with this, there has been a decrease in the number of reported aseptic loosenings: it is possible that some infections reported today were earlier reported as aseptic loosenings.

Furthermore, more aggressive surgical treatment of early infected THAs without removal of the implant is now more common. Such revisions without removing or exchanging part of the implants are not reported to the register. With modular prostheses, which have become more common in recent years, easily removable parts are exchanged and accordingly reported to the register. This could also contribute to the increase in reported infections.

It is, however, reassuring for us that our recommendations of four doses of systemic antibiotic prophylaxis on the day of surgery combined with antibiotic in the cement still gives the best survival for primary THAs, with all reasons for revision, with aseptic loosening, and with infection as end-point in the analyses.

Conclusions

In the Norwegian Arthroplasty Register the best results for primary THA are found when antibi-