Antibiotics as Anti-Inflammatory and Immunomodulatory Agents

Bruce K. Rubin
Jun Tamaoki
Editors

Birkhäuser
Progress in Inflammation Research

Series Editor

Prof. Michael J. Parnham PhD
Senior Scientific Advisor
PLIVA Research Institute Ltd.
Prilaz baruna Filipovića 29
HR-10000 Zagreb
Croatia

Advisory Board

G. Z. Feuerstein (Merck Research Laboratories, West Point, PA, USA)
M. Pairet (Boehringer Ingelheim Pharma KG, Biberach a. d. Riss, Germany)
W. van Eden (Universiteit Utrecht, Utrecht, The Netherlands)

Forthcoming titles:
Antirheumatic Therapy: Actions and Outcomes,
NPY Family of Peptides in Immune Disorders, Inflammation, Angiogenesis and Cancer,
 G.Z. Feuerstein, Z. Zukowska (Editors), 2005
Turning up the Heat on Pain: Vanilloid Receptors in Pain and Inflammation,
 A.B Malmberg, K.R. Bley (Editors), 2005
Regulatory T-Cells in Inflammation, L. Taams, A.N. Akbar, M.H.M. Wauben (Editors), 2005
Sodium Channels, Pain, and Analgesia, K. Coward, M. Baker (Editors), 2005
Complement and Kidney Disease, P.F. Zipfel (Editor), 2005

(Already published titles see last page.)
Antibiotics as Anti-Inflammatory and Immunomodulatory Agents

Bruce K. Rubin
Jun Tamaoki

Editors

Birkhäuser Verlag
Basel · Boston · Berlin
Contents

List of contributors .. vii

Preface ... xi

I. Basic research ... 1

Indirect antimicrobial effects .. 3

Kazuhiro Tateda, Theodore J. Standiford and Keizo Yamaguchi
Effects of antibiotics on Pseudomonas aeruginosa virulence factors
and quorum-sensing system ... 1

Anti-inflammatory effects .. 25

Michael J. Parnham
Antibiotics, inflammation and its resolution: an overview 27

Charles Feldman and Ronald Anderson
The cytoprotective interactions of antibiotics with human ciliated
airway epithelium ... 49

Jun-ichi Kadota
Chemotaxis ... 65

Hajime Takizawa
Cytokines ... 77

Marie-Thérèse Labro
Antibacterial agents and the oxidative burst 87

Jun-ichi Kadota
Immune system ... 107
Mucoregulatory effects ... 121

Kiyoshi Takeyama
Macrolides and mucus production .. 123

Jun Tamaoki
Ion channel regulation .. 133

II. Clinical results .. 145

Arata Azuma and Shoji Kudoh
The use of macrolides for treatment of diffuse panbronchiolitis 147

Adam Jaffé and Andrew Bush
Macrolides in cystic fibrosis .. 167

Kazuhiro Takeuchi, Yuichi Majima and Qutayba Hamid
Macrolides and upper airway/sinus disease 193

Rose Jung, Mark H. Gotfried and Larry H. Danziger
Benefits of macrolides in the treatment of asthma 205

Arata Azuma
Roles of antibiotics in treatment of lung injury 219

Keiichi Mikasa, Kei Kasahara and Eiji Kita
Antibiotics and cancer, arthritis and IBD ... 227

Bruce K. Rubin, Markus O. Henke and Axel Dalhoff
Anti-inflammatory properties of antibiotics other than macrolides 247

Index ... 269
List of contributors

Ronald Anderson, MRC Unit for Inflammation and Immunity, Department of Immunology, University of Pretoria, Pretoria, and Tshwane Academic Division of the National Health Laboratory Service, South Africa; e-mail: randerso@medic.up.ac.za

Arata Azuma, Fourth Department of Internal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan; e-mail: a-azuma@nms.ac.jp

Andrew Bush, Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, Sydney Street, London SW3 6NP, UK; e-mail: abush@rbh.nthames.nhs.com

Axel Dalhoff, Bayer AG, Aprather Weg, 42096 Wuppertal, Germany; e-mail: axel.dalhoff@bayerhealthcare.com

Larry H. Danziger, Department of Pharmacy Practice, University of Illinois at Chicago, USA; e-mail: danziger@uic.edu

Charles Feldman, Department of Medicine, University of Witwatersrand, Medical School, 7 York Road, Parktown, 2193, Johannesburg, South Africa; e-mail: feldmane@medicine.wits.ac.za

Mark H. Gotfried, Department of Medicine, University of Arizona, Phoenix, Arizona; and Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, USA

Qutayba Hamid, McGill University, Canada; e-mail: qutayba.al_heialy@staff.mcgill.ca

Markus O. Henke, Department of Pulmonary Medicine, Universität Marburg, Baldingerstrasse 1, 35043 Marburg, Germany; e-mail: markus.henke@staff.uni-marburg.de
List of contributors

Adam Jaffé, Portex Respiratory Medicine Group, Great Ormond Street Hospital for Children NHS Trust & Institute of Child Health, Great Ormond Street, London WC1N 3JH, UK; e-mail: a.jaffe@ich.ucl.ac.uk

Rose Jung, Department of Clinical Pharmacy, University of Colorado Health Science Center, Denver, USA

Jun-ichi Kadota, Division of Pathogenesis and Disease Control, Department of Infectious Diseases, Oita University Faculty of Medicine, 1-1 Hasama, Oita 879-5593, Japan; e-mail: kadota@med.oita-u.ac.jp

Kei Kasahara, Department of Medicine II, Nara Medical University Hospital, Nara Medical University, 840 Shijyocho, Kashihara, Nara 634-8521, Japan

Eiji Kita, Department of Bacteriology, Nara Medical University Hospital, Nara Medical University, 840 Shijyocho, Kashihara, Nara 634-8521, Japan; e-mail: eijikita@nmu-gw.naramed-u.ac.jp

Shoji Kudoh, Fourth Department of Internal Medicine, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan; e-mail: kuntonjp@nms.ac.jp

Marie-Thérèse Labro, INSERM U479, CHU X. Bichat, 16 rue Henri Huchard, 75018 Paris, France; e-mail: labro@bichat.inserm.fr

Yuichi Majima, Department of Otorhinolaryngology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; e-mail: majima@clin.med.mie-u.ac.jp

Keiichi Mikasa, Center for Infectious Diseases, Nara Medical University Hospital, Nara Medical University, 840 Shijyocho, Kashihara, Nara 634-8521, Japan

Michael J. Parnham, PLIVA Research Institute Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; e-mail: michael.parnham@pliva.hr

Bruce K. Rubin, Department of Pediatrics, School of Medicine, Wake Forest University, Medical Center Boulevard, Winston-Salem, NC 27157-1081, USA; e-mail: brubin@wfubmc.edu

Theodore J. Standiford, Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0360, USA
List of contributors

Kazuhiko Takeuchi, Department of Otorhinolaryngology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; e-mail: kazuhiko@clin.medic.mie-u.ac.jp

Kiyoshi Takeyama, First Department of Medicine, Tokyo Women’s Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; e-mail: kiyot@kj8.so-net.ne.jp

Hajime Takizawa, Department of Respiratory Medicine, University of Tokyo, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; e-mail: takizawa-phy@h.u-tokyo.ac.jp

Jun Tamaoki, First Department of Medicine, Tokyo Women’s Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo 162-8666, Japan; e-mail: jtamaoki@chi.twmu.ac.jp

Kazuhiro Tateda, Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Ohmorinishi, Ohtaku, Tokyo 143-8540, Japan; e-mail: kazu@med.toho-u.ac.jp

Keizo Yamaguchi, Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Ohmorinishi, Ohtaku, Tokyo 143-8540, Japan
The antibiotic era began in earnest during World War II with the “miracle of penicillin”. Following the introduction of penicillin, the quest was on to discover similar antimicrobial agents. In the late 1940s, erythromycin A was isolated from a soil sample found in the Philippine island of Iloilo, and in 1952 erythromycin was introduced by Eli Lilly Company under the name of Ilosone, as an alternative to penicillin for emerging penicillin-resistance bacteria. It was recognized early on that the gastrointestinal side effects of erythromycin A could be modified by altering the chemical structure of the agent, and in the early 1990s clarithromycin and azithromycin were developed to be more acid-stable and with fewer side effects. Not long after this, it was shown that the macrolide antibiotics had immunomodulatory effects separate from antimicrobial properties.

The “steroid sparing” properties of the 14-member macrolides troleandomycin and oleandomycin, were first described in patients with severe, steroid-dependent asthma. Erythromycin was also found to reduce the need for corticosteroids in patients with asthma and, as described by Rose Jung, Mark H. Gotfried and Larry H. Danziger, in these trials some severe, steroid-dependent asthmatics were able to discontinue systemic corticosteroids with the use of macrolide antibiotics. Although it was speculated that the mechanism of macrolide action for severe asthma was by interfering with corticosteroids metabolism, in the clinical trials the reduction in steroid side effects, dosage, and in some cases discontinuation of steroids suggested a different effect on the underlying disease.

This was exploited in the 1980s in Japan for the treatment of the nearly uniformly fatal airway disease diffuse panbronchiolitis (DPB), as described by Arata Azuma and Shoji Kudoh. Since that time, many investigators in Japan – and now around the world – have studied these immunomodulatory properties not only of macrolide antibiotics but also of other classes of antimicrobials. Studies in the last 5 years have confirmed these effects, not only for the treatment of DPB but for also cystic fibrosis (CF) as discussed by Adam Jaffé and Andrew Bush. With the widespread adoption of macrolide therapy for the treatment of CF there has been an explosion of interest and publications in the field. A literature search conducted in
June 2004 from the PubMed database shows that there have been nearly 300 references to the immunomodulatory or anti-inflammatory properties of antibiotics since 1976.

This book is divided into two sections; the first, on basic research, evaluates the effects of macrolide antibiotics on bacteria other than by ribosomally-mediated bacteriostasis. Specifically the macrolide antibiotics have been shown to influence the expression of virulence factors in gram-negative organisms and decrease the ability of these bacteria to form biofilms as detailed in the chapters by Kazuhiro Tateda, Theodore J Standiford, and Keizo Yamaguchi. A series of six chapters then follow detailing the various anti-inflammatory and immunomodulatory effects of these antibiotics. Immunomodulation in this sense refers to the ability to downregulate deleterious hyperimmunity leading to airway damage as opposed to anti-inflammatory properties, which refers to the suppression of all inflammatory responses whether beneficial or not. Thus immunomodulation should not impair the normal host defense but will prevent an acute inflammatory response from becoming chronic and destructive inflammation. Michael Parnham gives a superb overview of the role of inflammation and its resolution with antibiotics. This is then followed by chapters that document the effect of macrolide antibiotics on cell membrane protection and epithelial stabilization (Charles Feldman and Ronald Anderson), neutrophil activation and chemotaxis (Jun-ichi Kadota), reduction of proinflammatory cytokine expression and release (Hajime Takizawa), the oxidative burst (Marie-Thérèse Labro), and immune activation (Jun-ichi Kadota).

Related to these immunomodulatory effects are the effects on mucus secretion. It is well established that mucus secretion is beneficial to the airway preventing bacterial infection, airway desiccation, and aiding particle clearance; however mucus hypersecretion can lead to airflow obstruction and entrap microorganisms as seen in patients with chronic airway inflammation. Many chronic inflammatory airway diseases such as COPD, asthma, sinusitis, DPB, bronchiectasis and CF are associated with hyperinflammation and airway obstruction with secretions. Kiyoshi Takeyama discusses the role of macrolides in mucus production and secretion and Jun Tamaoki reviews the related data on the regulation of ion channels and how this relates to macrolide antibiotics and mucus secretion.

The second part of the book discusses the clinical results using antibiotics as mucoregulatory agents in a variety of diseases. Shoji Kudoh, who was the first to describe the role of macrolides in the treatment of DPB, and Arata Azuma provide a superbly updated overview of DPB including the current Japanese recommendations for the use of macrolides in treating this disease. These guidelines have proven useful for establishing appropriate therapy for Adam Jaffé and Andrew Bush, who discuss not only their landmark studies of azithromycin for the treatment of CF but also the results of recent large-scale studies that have led to wide acceptance of this therapy. This is followed by a chapter by Kazuhiko Takeuchi, Yuichi Majima, and Qutayba Hamid that reviews the use of macrolides in the therapy chronic upper air-
way diseases including sinusitis and nasal polyposis. Rose Jung, Mark H. Gotfried, and Larry H. Danziger then summarize the use of macrolides and the treatment of chronic asthma; in particular for persons with neutrophil-predominant, steroid dependent asthma. The role of immunomodulatory antibiotics in the treatment of lung injury is reviewed by Arata Azuma.

Eiji Kita, Keiichi Mikasa and Kei Kasahara give a superb review of the data suggesting a possible role of immunomodulatory antibiotics that can decrease proinflammatory cytokines for the therapy of nonpulmonary disorders including arthritis, inflammatory bowel disease, and cancer. The final chapter by Markus O. Henke, Axel Dalhoff, and Bruce K. Rubin reviews the immunomodulatory properties of antibiotics other than macrolides with the special emphasis on the quinolones, where data now support the ability of these agents to affect the immune systems.

This is an exciting and a rapidly changing field and we are delighted to have the opportunity to summarize the state of the art as of 2004. Thus it is timely that this book be published summarizing these data and it is appropriate that half of the authors are from Japan. We personally believe it is likely that we will see a more widespread use of these antibiotics for their immunomodulatory properties as well as the development of derivatives of these medications that have no antibacterial properties but that do have more potent and directed immunomodulatory activity. This may permit more precise therapy for preventing biofilm diseases or chronic inflammation while reducing the risk of developing antimicrobial resistance to the macrolide class of antibiotics. The editors would like to thank Michael Parnham, the PIR series editor, for suggesting this book and for agreeing to write the overview chapter. We would also like to thank our editors at Birkhäuser Publishing including Karin Neidhart and Hans Detlef Klüber for their outstanding support. Finally the Editors of this monograph would like to thankfully acknowledge the many students and postdoctoral investigators who have worked with us over the years and enriched both our research laboratories and our lives.

Winston-Salem/Tokyo, July 2004

Bruce K. Rubin
Jun Tamaoki
I. Basic research