Infections Causing Human Cancer

With a contribution of
James G. Fox, Timothy C. Wang
and Julie Parsonnet
Related Titles

Debatin, K.-M., Fulda, S. (eds.)

Apoptosis and Cancer Therapy 2 Vol.
From Cutting-edge Science to Novel Therapeutic Concepts
2006
ISBN 3-527-31237-4

Gospodarowicz

Prognostic Factors in Cancer, Second Edition
2006
ISBN 0–471–46373–6

Novartis

Novartis Foundation Symposium 256 –
Cancer and Inflammation
2004
ISBN 0–470–85673–4

Kaufmann, S. H. E. (ed.)

Novel Vaccination Strategies
2004

Stuhler, G., Walden, P. (eds.)

Cancer Immune Therapy
Current and Future Strategies
2002
Harald zur Hausen

Infections Causing Human Cancer

With a contribution of
James G. Fox, Timothy C. Wang
and Julie Parsonnet
Table of Contents

1 **Historical Review** 1
1.1 The Early Period (1898–1911) 1
1.2 Frustration and Successes (1912–1950) 2
1.3 The Period from 1950 to 1965 3
1.4 A First Human Tumorvirus? 5
1.5 The Difficult 1970s 6
1.6 The Re-Emergence of a Concept 7
References 10

2 **The Quest for Causality** 17
2.1 Infectious Agents as Direct Carcinogens 20
2.2 Infectious Agents as Indirect Carcinogens 22
2.2.1 Induction of Chromosomal Aberrations 23
References 25

3 **Tumors Linked to Infections: Some General Aspects** 27
3.1 Tumor Types Linked to Infections 27
3.2 Global Contributions of Infections to Human Cancers 28
3.3 Host Interactions with Potentially Carcinogenic Infections: The CIF Concept 30
3.3.1 The CIF-I Cascade 32
3.3.2 The CIF-II Cascade 34
3.3.3 The CIF-III Cascade 35
References 38

4 **Herpesviruses and Oncogenesis** 41
References 43
4.1 Alphaherpesvirinae 44
4.1.1 Herpes Simplex Viruses Types 1 and 2 44
4.1.2 Varicella-Zoster Virus 47
References 47
4.2 Betaherpesvirinae 51
4.2.1 Human Cytomegalovirus 51
Table of Contents

4.2.2 Human Herpesvirus Type 6 54
References 60
4.3 Gammaherpesvirinae (Lymphocryptoviruses) 65
4.3.1 Epstein–Barr Virus 65
4.3.1.1 Characterization of the Virus, and its Biological Properties 66
4.3.1.2 EBV Gene Products in Latent Infection 67
4.3.1.3 Transforming Properties of EBV and Tumor Induction in Animals 72
4.3.1.4 Various Stages of Epstein–Barr Viral Latency 74
4.3.1.5 EBV in Infectious Mononucleosis 76
4.3.1.6 EBV in X-Chromosone-Linked Lymphoproliferative Disease 77
4.3.1.7 EBV in Immunoblastic Lymphoma 77
4.3.1.8 EBV in Burkitt's Lymphoma 78
4.3.1.9 EBV in Nasopharyngeal Carcinoma 83
4.3.1.10 EBV in Hodgkin's Disease 88
4.3.1.11 EBV in Gastric and Esophageal Carcinomas 92
4.3.1.12 EBV in NK/T-Cell Lymphomas 94
4.3.1.13 EBV and Other Human Cancers 95
References 95
4.4 Rhadinoviruses 118
4.4.1 Human Herpesvirus Type 8 (HHV-8, Kaposi's sarcoma-associated herpesvirus) 118
4.4.1.1 Historical Background 118
4.4.1.2 Epidemiology and Mode of Transmission 119
4.4.1.3 Pathogenesis: Other Diseases Associated with HHV-8 Infections 121
4.4.1.4 Viral Genes Expressed in Viral Latency 122
4.4.1.5 Cellular Genes Regulating Viral Latency 126
4.4.1.6 Interaction Between HIV and HHV-8 127
4.4.1.7 Viral Homologues to Host Cell Genes and Evasion from the Host's Immune Mechanisms 128
4.4.1.8 HHV-8-Related Herpesviruses in Nonhuman Primates 131
4.4.2 Marek's Disease of Chickens 132
References 132

5 Papillomavirus Infections: A Major Cause of Human Cancers 145
5.1 Introduction 145
5.1.1 Structure of the Viral Particle, Transcriptional Regulation, and Taxonomy 146
5.1.2 Transmission and Natural History of Papillomavirus Infections 152
5.1.3 Functions of Viral Proteins 153
5.1.3.1 E6 153
5.1.3.2 E6* 157
5.1.3.3 E7 157
5.1.3.4 E5 162
5.1.3.5 E1 163
5.1.3.6 E2 164
5.1.3.7 E4 165
5.2 The Concept of Cellular Interfering Cascades: Immunological, Intracellular and Paracrine Host Factors Influencing Viral Oncogene Expression or Function 166
5.2.1 Immunological Control 167
5.2.2 CIF-I: Recognition System and its Disturbance 168
5.2.3 CIF-II: Intracellular Control of Viral Oncoprotein Functions 169
5.2.4 CIF-III: Paracrine Control 171
5.3 Cancers Linked to HPV Infections 174
5.3.1 Cancer of the Cervix 174
5.3.2 Penile Cancer 177
5.3.3 Vulvar Cancer 177
5.3.4 Vaginal Cancer 178
5.3.5 Perianal and Anal Cancer 178
5.3.6 Cancer of the Head and Neck 179
5.3.7 Other Cancers 181
5.3.7.1 Breast Cancer 181
5.3.7.2 Prostate Cancer 181
5.3.7.3 Lung Cancer 181
5.3.7.4 Colon and Rectum Cancers 182
5.3.7.5 Ovarian Cancer 182
5.3.7.6 Bladder Cancer 182
5.3.7.7 Nasal, Sinonasal and Conjunctival Cancers 183
5.3.7.8 Cancer of the Larynx 183
5.3.7.9 Cancer of the Esophagus 184
5.3.8 Cutaneous Papillomavirus Infections and Skin Cancer 185
5.4 The Role of Cofactors 188
5.4.1 Non-Infectious Cofactors 188
5.4.1.1 Smoking 188
5.4.1.2 Hormones and Hormonal Contraceptive Use 189
5.4.1.3 Parity 190
5.4.1.4 Nutrients 190
5.4.2 Infectious Cofactors 191
5.4.2.1 Herpes viruses 191
5.4.2.2 Chlamydia trachomatis 192
5.4.2.3 Human Immunodeficiency Virus 193
5.4.2.4 Other Infections 193
5.5 Preventive Vaccination 194
5.6 Therapeutic Vaccination 195
5.7 Therapy 197
References 198

6 Hepadnaviruses 244
6.1 Hepatitis B 244
6.1.1 Historical Aspects 244
Table of Contents

6.1.2 Epidemiology and Clinical Symptoms 245
6.1.3 Taxonomy and Viral Genome Structure 248
6.1.4 Viral Gene Products and Functions 250
6.1.4.1 Core Antigen 250
6.1.4.2 Polymerase 250
6.1.4.3 HB X Antigen 251
6.1.5 Pathogenesis and Immune Interactions 253
6.1.6 Role in Hepatocellular Carcinoma 254
6.1.6.1 HBx Transgenic Mice and HCCs 254
6.1.6.2 HBS Transgenic Mice and HCCs 255
6.1.7 Interaction of Hepatitis B Infection with Chemical Carcinogens (Aflatoxins and Alcohol) 257
6.1.7.1 Alcohol 257
6.1.7.2 Aflatoxin 257
6.1.8 Mechanism of HBV-Mediated Oncogenesis 258
6.1.9 Prevention and Control of HBV-Mediated Infections 259
6.1.9.1 Prevention 259
6.1.9.2 Therapy 260
References 261

7 Flaviviruses 274
7.1 Hepatitis C Virus 274
7.1.1 History 274
7.1.2 Epidemiology 274
7.1.3 Viral Genome Structure, Transcription, Translation, Gene Functions, and Taxonomy 276
7.1.4 Infection, Transmission, and Viral DNA Persistence 277
7.1.5 Pathogenesis and Immune Interactions 278
7.1.5.1 Evasion of Host Defense Mechanisms 278
7.1.5.2 Host Immune Responses 280
7.1.6 Role in Hepatocellular Carcinoma 281
7.1.6.1 Experimental Evidence for a Role of HCV in Liver Cancer 281
7.1.7 Role in Lymphoproliferative Diseases 286
7.1.7.1 Mixed Cryoglobulinemia 286
7.1.7.2 Splenic Lymphoma with Villous Lymphocytes 286
7.1.7.3 Non-Hodgkin’s Lymphoma 287
7.1.8 Prevention and Control 288
7.1.8.1 Vaccines 288
7.1.8.2 Therapy 288
References 289

8 Retrovirus Family 304
8.1 Human T-Lymphotrophic Retrovirus (HTLV-1) 306
8.1.1 Historical Background 306
8.1.2 Epidemiology and Transmission 306
Table of Contents

8.1.3 Viral Gene Organization and Gene Products 307
- 8.1.3.1 The gag Protein 307
- 8.1.3.2 HTLV Protease 308
- 8.1.3.3 The Polymerase Protein 308
- 8.1.3.4 The env Protein 309
- 8.1.3.5 The Tax Protein 309
- 8.1.3.6 The Rex Protein 311
- 8.1.3.7 The p12(I) Protein 312
- 8.1.3.8 The p30(II) Protein 313
- 8.1.3.9 The p13(II) Protein 313

8.1.4 Diseases Caused by HTLV-1 Infection 314
- 8.1.5 Immune Response to HTLV-1 Infections 314
- 8.1.6 Animal Studies 316
- 8.1.7 Mechanism of Cell Transformation by HTLV-1 317
- 8.1.8 Prevention and Therapy 319

8.2 Human T-Lymphotropic Retrovirus-2 (HTLV-2) 337

8.3 Human Endogenous Retroviruses 341
- 8.3.1 The Discovery of HERVs 342
- 8.3.2 Genome Organization and Transcription 343
- 8.3.2.1 HERV-K 343
- 8.3.2.2 HERV-H 345
- 8.3.2.3 HERV-W 346
- 8.3.2.4 Other Endogenous Human Retrovirus Genomes 347

8.4 Gibbon Ape Leukemia Virus and Simian Sarcoma Virus 361

9 Other Virus Infections Possibly Involved in Human Cancers 366
- 9.1 Polyomaviruses (JC, BK, and SV40) 366
- 9.1.1 BK Virus 368
- 9.1.1.1 Tumorigenicity of BK Virus in Experimental Animals 369
- 9.1.1.2 Immortalization of Human Cells by BK Virus, and BK Virus in Human Cancers 369
- 9.1.2 JC Virus 370
- 9.1.2.1 Tumorigenicity of JC Virus in Experimental Animals 370
- 9.1.2.2 Immortalization of Human Cells by JC Virus, and JC Virus in Human Cancers 371
- 9.1.3 SV40 373
- 9.1.3.1 Tumorigenicity of SV40 in Experimental Animals 373
9.1.3.2 Immortalization of Human Cells by SV40, and SV40 in Human Cancers 373
9.1.3.3 Does SV40 Represent a Human Carcinogen? 376
References 377

10 Helicobacter, Chronic Inflammation, and Cancer 386
James G. Fox, Timothy C. Wang, and Julie Parsonnet
10.1 Discovery, Taxonomy, and Genomics 386
10.1.1 Discovery 386
10.1.1.1 Gastric Helicobacters 386
10.1.1.2 Enterohelial Helicobacters 389
10.1.2 Taxonomy 390
10.1.2.1 Gastric Helicobacters 390
10.1.2.2 Enterohelial Helicobacter spp. 391
10.1.3 Genomic Analysis 392
10.1.3.1 H. pylori 392
10.1.3.2 H. hepaticus 395
10.2 Life Cycle, Specificity, and Virulence Determinants in Cancer Development 396
10.2.1 Epidemiology of H. pylori 396
10.2.1.1 Transmission of H. pylori 398
10.2.1.2 Age of Acquisition 400
10.2.2 Bacterial Factors Responsible for Cell Specificity and Virulence 409
10.2.3 Host Factors Playing a Role in Gastric Diseases 412
10.2.4 Environmental Factors 413
10.2.4.1 Diet 414
10.2.4.2 Co-Infection 414
10.2.4.3 Bacterial Overgrowth 415
10.2.5 Natural History and Stages of Infection 416
10.2.6 Chronic Inflammation and Cancer 417
10.2.6.1 Reactive Oxygen/Nitrogen Species 418
10.2.6.2 Epithelial Cell Proliferation and Apoptosis 419
10.2.6.3 Role of Specific Cytokines 419
10.2.6.4 Link to T Cells and Macrophages 421
10.2.6.5 Bone Marrow Stem Cell Recruitment 422
10.3 Prevention of H. pylori-Induced Cancer 424
10.3.1 Interrupting Transmission in Children 424
10.3.2 Treatment Strategies of H. pylori in Populations at Risk 424
10.4 Animal Models 426
10.4.1 Animal Models for Helicobacter-Induced Gastric Cancer 426
10.4.1.1 Gerbil 426
10.4.1.2 Mouse 428
10.4.1.3 Ferret 430
10.4.2 Animal Models of MALT Lymphoma 432
10.4.2.1 H. felis-Induced MALT Lymphoma 432
10.4.3 Animal Models for Enterohepatic Helicobacter-Induced Cancer 433
10.4.3.1 Helicobacter hepaticus-Induced Liver Cancer 433
10.4.3.2 Helicobacter bilis-Associated Hepatitis 435
10.4.3.3 Helicobacter hepaticus and Lower Bowel Cancer 435
10.5 Virulence Determinants of Enterohepatic Helicobacter spp. 437
10.5.1 H. hepaticus is a Tumor Promoter in the Liver 437
10.5.2 H. hepaticus Increases ROS and Intestinal Tumors 438
10.5.3 H. hepaticus Pathogenicity Island 438
10.5.4 Cytolethal Distending Toxin (CDT) 439
10.6 Enterohepatic Helicobacter spp.: Are they Co-Carcinogens? 440
References 442

11 Parasites and Human Cancers 468
11.1 Schistosoma Infections 468
11.1.1 Epidemiology 470
11.1.2 Experimental Studies in Animals 471
11.1.3 Schistosoma Eggs and Cancer 472
11.1.4 Interactions of Schistosoma with Other Infections, and Chemical Factors 473
11.1.5 Mechanism of Schistosoma-Induced Cancers 474
11.1.6 Control and Therapy 474
References 474
11.2 Infection with Liver Flukes (Opisthorchis viverrini, O. felineus, Clonorchis sinensis) 477
11.2.1 Epidemiology 478
11.2.2 Immune Response 480
11.2.3 Role of Liver Flukes in Human Cancer, and Studies in Animals 480
11.2.4 Mechanism of Carcinogenicity 481
11.2.5 Control and Therapy 481
References 482

12 Cancers with a Possible Infectious Etiology 485
12.1 Leukemias and Lymphomas 485
12.1.1 Epidemiological Data 486
12.1.2 The Target Cell Conditioning Model 492
References 495
12.2 Human Breast Cancer 500
12.3 Other Human Cancers Possibly Linked to Infectious Events 502
References 503
Preface

For many years I have been tempted to write a comprehensive book on the role of infectious agents in human cancers. Progress has been particularly rapid in this field during the course of the past 25 years, and today we can convincingly report that approximately 20% of the global cancer incidence is initiated or promoted by infectious events. I had admired the task carried out by Ludwik Gross. Since his two-volume publication *Oncogenic Viruses* in 1961, with additional editions in 1970 and in 1983, a number of books have appeared on similar topics, virtually all of them authored by multiple scientists and some of them very heterogeneous in content and structure. For these reasons, I planned to write a book which attempted to develop a more unifying concept and a consistent structure for the individual chapters. Considering the overwhelming magnitude of data, I was sure that I could not undertake this task during my active period as scientific director of the German Cancer Research Center in Heidelberg, and so postponed this for “active retirement”. Ultimately, I was pleased that I was able to persuade James Fox from Harvard University to contribute Chapter 10, on *Helicobacter*, as this would have been beyond my personal experience. He immediately consented and jointly with Timothy C. Wang and Julie Parsonnet delivered the chapter in time.

The book is not intended to cover the structure and molecular biology of the agents presented in great detail, but rather aims to concentrate on those aspects that link the respective agents to human oncogenesis. The book should introduce interested colleagues, clinicians, and students to the field, and help to analyze some of the developments that even 20 years ago attracted only minimal attention. Today, this research has culminated in the development of the first – and apparently successful – vaccines for the prevention of specific, common human cancers, cervical carcinomas, and liver cell cancer. Within the book we have tried to provide the readers with an extensive bibliography after each individual chapter, in order to permit further studies on the subject. However, even an attempt to select the most important papers in the field will almost inevitably miss some publications that our colleagues consider as very important. Consequently, I apologize in advance to all of those readers who feel that we did not cover their own or other research areas adequately.

Fortunately, the response on the part of my colleagues was friendly and generous, and they provided helpful suggestions and corrected some of my statements. I am