RANDOMNESS AND UNDECIDABILITY IN PHYSICS

K Svozil

World Scientific
RANDOMNESS & UNDECIDABILITY IN PHYSICS
This page is intentionally left blank
RANDOMNESS & UNDECIDABILITY IN PHYSICS

Karl Svozil
Institute for Theoretical Physics
Technical University of Vienna
Austria
Dedicated to the memory of my father

Karl Svozil

3. 8. 1918 — 11. 5. 1991
This page is intentionally left blank
Preface

Recent findings in the computer sciences, discrete mathematics, formal logics and metamathematics have opened up a *via regia* for the investigation of undecidability and randomness in physics. A translation of these formal and abstract concepts yields a fresh look into diverse features of physical modelling such as quantum complementarity and the measurement problem, but also stipulates questions related to the necessity of the assumption of continua.

Any physical system may be perceived as a computational process. One could even speculate that physical systems *exactly* correspond to, and indeed are, computations of a very specific kind; with a particular computer model in mind. From this point of view it is absolutely reasonable to investigate physical systems with concepts and methods developed by the computer sciences.

Conversely, any computer may be perceived as a physical system; not only in the immediate sense of the physical properties of its hardware. Computers are a medium to virtual realities. The foreseeable importance of such virtual realities stimulates the investigation of an "inner description," a "virtual physics," if you like, of these universes of computation. Indeed, one may consider our own universe as just one particular realisation of an enormous number of virtual realities, most of them awaiting discovery.

Besides these issues, the intuitive terms "rational" (human thought), "conceivable" and so on, have been made precise by the concepts of mechanic computation and recursive enumeration. The reader may find these developments sufficiently exciting to go on and study this new field.

The first part of this book introduces the fundamental concepts. Informally stated, recursive function theory is concerned with the question of whether an entity is computable in a very precisely defined way. Algorithmic information theory deals with the quantitative description of computation, in particular with the shortest program length. Coding and suitable algebraic representation of physical statements are the prerequisites for their algorithmic treatment.

One motive of this book is the recognition that what is often referred to as "randomness" in physics might actually be a signature of undecidability for systems whose evolution is computable on a step-by-step basis. Therefore the second part of the book is devoted to the investigation of undecidability.

To give a flavour of the type of questions envisaged: Consider an arbitrary algorithmic system which is computable on a step-by-step basis. — Any computer program is such a system. It is in general impossible to specify another algorithmic procedure (including itself) which, by performing experiments and successive input/output analysis on the first system, finds the deterministic law by which it is governed. But even if such a law is specified, it is in general impossible to predict the system behaviour in the "distant
future.' In other words: no "speedup" or "computational shortcut" is possible. These statements are consequences of two classical theorems in recursion theory, the recursive unsolvability of the rule inference problem and of the halting problem.

Certain self-referential statements like "I am lying" are paradoxical and resemble the absurd attempt of Freiherr von Münchhausen to rescue himself from a swamp by dragging himself out by his own hair. Such paradoxes can only be consistently avoided by accepting restrictions to the expressive power and to the comprehension of the associated methods and systems — with undecidability and incompleteness as consequence.

Complementarity is a feature which can be modelled by experiments on certain finite automata. This is due to the fact that measurement of one observable of the automaton destroys the possibility to measure another observable of the same automaton and vice versa. Certain self-referential measurements pursue a similar attempt: on the one hand they pretend to render the "true" value of an observable, while on the other hand they have to interact with the object to be measured and thereby inevitably change its state.

It is important to distinguish between the "intrinsic" view of an observer, who is entangled with and who is an inseparable part of the system, and the "extrinsic" perspective of an observer who is not entangled with the system via self-reference. Indeed, the recognition of the importance of intrinsic perception, of a "view from within," might be considered as a key observation towards a better understanding of undecidability and complementarity.

The third, last part of the book is dedicated to a formal definition of randomness and entropy measures based on algorithmic information theory.

Help and discussions with Matthias Baaz, Norbert Brunner, Cristian Calude, Gregory Chaitin, Anatol Dvurečenskij, Günther Krenn, Michiel van Lambalgen, Otto Rössler, Martin Schaller, Christoph Strnadl, Johann Summhammer, Walter Thirring and Anton Zeilinger are gratefully acknowledged. Nevertheless, all misinterpretations and mistakes are mine. Thanks go also to Jennifer Gan from World Scientific, who managed to guide me through the production of this book both kindly and smoothly.

Vienna, March 1993
Karl Svozil

Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10/136
A-1040 Vienna, Austria

e1360dab@awiuni11.bitnet
e1360dab@AWIUNI11.EDVZ.UniVie.AC.AT
Contents

Preface vii
List of symbols xv

Algorithmic physics: the Universe as a computer 1

1 Algorithmics and recursive function theory 3
 1.1 Algorithm and effective computability 3
 1.2 Recursive functions 6
 1.2.1 Primitive recursive function 6
 1.2.2 Diagonalization 8
 1.2.3 Partial recursive function 9
 1.2.4 Enumeration of partial recursive functions 10
 1.2.5 Existence of uncomputable reals 11
 1.2.6 Church-Turing thesis 13
 1.2.7 Computation = polynomial equation 15
 1.2.8 Recursively enumerable ≠ recursive 15
 1.3 Universal computers 16
 1.3.1 Turing Machine 17
 1.3.2 Cellular Automata 18
 1.3.3 Register machines 21
 1.3.4 Digital computers are physical systems which are universal up to finite complexities 21
 1.4 Finite automata 22
 1.4.1 Definition 22
 1.4.2 Distinguishability of states 23
 1.5 Oracles 24
 1.5.1 Definition 24
 1.5.2 Zeno squeezing 24
 1.6 Recursive analysis 27
 1.7 Formal systems correspond to computable processes 29

2 Mechanism and determinism 33

3 Discrete physics 37
 3.1 Infinite divisibility and continuity 37
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1 Definition</td>
<td>91</td>
</tr>
<tr>
<td>7.2.2 Algorithmic probability</td>
<td>91</td>
</tr>
<tr>
<td>7.2.3 Threshold for computability</td>
<td>93</td>
</tr>
<tr>
<td>7.2.4 Complexity of applications</td>
<td>93</td>
</tr>
<tr>
<td>7.2.5 Machine independence</td>
<td>94</td>
</tr>
<tr>
<td>7.2.6 Estimates and identities</td>
<td>94</td>
</tr>
<tr>
<td>7.3 Infinite computation</td>
<td>97</td>
</tr>
<tr>
<td>8 Computational complexity</td>
<td>99</td>
</tr>
<tr>
<td>8.1 Definition</td>
<td>99</td>
</tr>
<tr>
<td>8.1.1 Uncomputability</td>
<td>100</td>
</tr>
<tr>
<td>8.1.2 Machine dependence</td>
<td>101</td>
</tr>
<tr>
<td>8.2 Computational complexity classification</td>
<td>101</td>
</tr>
<tr>
<td>8.2.1 The class P</td>
<td>102</td>
</tr>
<tr>
<td>8.2.2 Invariance of complexity class P</td>
<td>102</td>
</tr>
<tr>
<td>8.2.3 The class NP</td>
<td>103</td>
</tr>
<tr>
<td>8.3 Maximum halting time</td>
<td>104</td>
</tr>
<tr>
<td>8.4 Greatest recurrence period</td>
<td>105</td>
</tr>
<tr>
<td>9 Undecidability</td>
<td>107</td>
</tr>
<tr>
<td>9.1 True ≠ provable</td>
<td>109</td>
</tr>
<tr>
<td>9.1.1 Self-reference</td>
<td>110</td>
</tr>
<tr>
<td>9.1.2 Truth versus provability</td>
<td>111</td>
</tr>
<tr>
<td>9.1.3 Consequences for physics</td>
<td>112</td>
</tr>
<tr>
<td>9.2 Cantor's diagonalization method</td>
<td>113</td>
</tr>
<tr>
<td>9.3 Recursive unsolvability of the halting problem</td>
<td>114</td>
</tr>
<tr>
<td>9.4 Maximum halting time</td>
<td>117</td>
</tr>
<tr>
<td>9.5 Gödel's incompleteness theorems</td>
<td>118</td>
</tr>
<tr>
<td>9.6 Recursive unsolvability of the rule inference problem</td>
<td>121</td>
</tr>
<tr>
<td>9.7 True > provable</td>
<td>122</td>
</tr>
<tr>
<td>9.8 Paradoxical combinator</td>
<td>125</td>
</tr>
<tr>
<td>10 Complementarity</td>
<td>127</td>
</tr>
<tr>
<td>10.1 Historical review of quantum complementarity</td>
<td>127</td>
</tr>
<tr>
<td>10.2 Automaton propositional calculus</td>
<td>129</td>
</tr>
<tr>
<td>10.2.1 Statement of the problem</td>
<td>130</td>
</tr>
<tr>
<td>10.2.2 Propositions, relation and operations</td>
<td>130</td>
</tr>
<tr>
<td>10.2.3 Trivial automaton</td>
<td>134</td>
</tr>
<tr>
<td>10.2.4 "Eating" automaton</td>
<td>134</td>
</tr>
<tr>
<td>10.2.5 "Counterexample"</td>
<td>137</td>
</tr>
<tr>
<td>10.3 Computational complementarity</td>
<td>141</td>
</tr>
<tr>
<td>10.3.1 Moore automaton</td>
<td>141</td>
</tr>
</tbody>
</table>

8 Computational complexity
8.1 Definition 99
8.1.1 Uncomputability 100
8.1.2 Machine dependence 101
8.2 Computational complexity classification 101
8.2.1 The class P 102
8.2.2 Invariance of complexity class P 102
8.2.3 The class NP 103
8.3 Maximum halting time 104
8.4 Greatest recurrence period 105

Undecidability
9 Classical results 109
9.1 True ≠ provable 109
9.1.1 Self-reference 110
9.1.2 Truth versus provability 111
9.1.3 Consequences for physics 112
9.2 Cantor's diagonalization method 113
9.3 Recursive unsolvability of the halting problem 114
9.4 Maximum halting time 117
9.5 Gödel's incompleteness theorems 118
9.6 Recursive unsolvability of the rule inference problem 121
9.7 True > provable 122
9.8 Paradoxical combinator 125

10 Complementarity
10.1 Historical review of quantum complementarity 127
10.2 Automaton propositional calculus 129
10.2.1 Statement of the problem 130
10.2.2 Propositions, relation and operations 130
10.2.3 Trivial automaton 134
10.2.4 "Eating" automaton 134
10.2.5 "Counterexample" 137
10.3 Computational complementarity 141
10.3.1 Moore automaton 141
10.3.2 Simple "quantum-like" automaton 147
10.3.3 Census of propositional calculi of generic four-state Moore and
 Mealy type automata 150
10.4 The inverse problem 159
10.5 Features of automaton universes 170
10.6 Bell-type inequalities for automata 173
10.7 Modelling classical measurements 174

11 Extrinsic indeterminism 177
 11.1 Extrinsic algorithmic description 177
 11.1.1 Active mode 177
 11.1.2 Passive mode 178
 11.2 Prediction by simulation 178
 11.3 Examples 179

12 Intrinsic indeterminism 181
 12.1 Intrinsic algorithmic description 181
 12.1.1 Passive mode 181
 12.1.2 Active mode 183
 12.2 Computation of forecast 186

13 Weak physical chaos 189

Randomness 191

14 Randomness in mathematics 193
 14.1 "Lawlessness" = "algorithmic incompressibility" 194
 14.1.1 Normalised random sequences 196
 14.1.2 Halting probability 196
 14.2 "Computational irreducibility" 197
 14.3 von Mises collectives 197
 14.3.1 Bernoulli sequences 198
 14.3.2 Church random sequences 199
 14.3.3 Wald random sequences 199
 14.3.4 Axiomatisation of randomness 199
 14.4 Statistical-based randomness 199
 14.4.1 Martin-Löf random sequences 200
 14.4.2 Solovay random sequences 200
 14.5 Equivalencies and comparisons 200

15 Random fractals and 1/f noise 203
 15.1 Self-similarity 203
 15.2 Random fractal construction 205
 15.3 1/f spectral density 207
Index

Contents

290