Lisbeth Borbye, Michael Stocum, Alan Woodall, Cedric Pearce, Elaine Sale, William Barrett, Lucia Clontz, Amy Peterson, and John Shaeffer

Industry Immersion Learning

Real-Life Industry Case-Studies in Biotechnology and Business
Lisbeth Borbye, Michael Stocum,
Alan Woodall, Cedric Pearce,
Elaine Sale, William Barrett,
Lucia Clontz, Amy Peterson,
and John Shaeffer

Industry Immersion Learning
Related Titles

Behme, S.

Manufacturing of Pharmaceutical Proteins
2009
ISBN: 978-3-527-32444-6

Gruber, A. C.

Biotech Funding Trends
Insights from Entrepreneurs and Investors
2009
ISBN: 978-3-527-32435-4

Meibohm, B. (ed.)

Pharmacokinetics and Pharmacodynamics of Biotech Drugs
Principles and Case Studies in Drug Development
2006
ISBN: 978-3-527-31408-9

Kerzner, H.

Project Management Case Studies
2005
ISBN: 978-0-471-75167-0
Industry Immersion Learning

Real-Life Industry Case-Studies in Biotechnology and Business
Contents

Preface XV

Disclaimer XVII

1 Principles of Industry Immersion Learning 1
Lisbeth Borbye

1.1 Introduction 2
1.2 Building a University – Industry Alliance 3
1.2.1 Educational Needs Assessment 3
1.2.2 Establishing Contact 3
1.2.3 Marketing Incentives 5
1.2.4 Obtaining Commitment 5
1.2.5 Alliance Dynamics 5
1.3 Design, Format, and Model Examples of Case Studies 6
1.3.1 Example 1: Technology Development 6
1.3.2 Example 2: Product Assessment 7
1.3.3 Example 3: Business Development 7
1.4 Basics of Industry Immersion Learning 8
1.4.1 Definition and Characterization 8
1.4.2 The Immersion Environment 8
1.4.3 Sample Work Flow of an Immersion Case Study 8
1.4.4 Interactive Agents 8
1.5 Predicted Learning Outcomes 9
1.6 Assessment of Actual Learning Outcomes 10
1.7 Overview of Selected Case Studies 10
1.8 Logistics of Industry Immersion Teaching 11
1.8.1 Topic Selection 11
1.8.2 Instructor and Instructor Affiliation 11
1.8.3 Timeline 13
1.8.4 Location 13
1.8.5 Teaching Format 14
1.8.6 Student Deliverables 14
2 Integration of Pharmaceutical and Diagnostic Co-Development and Commercialization: Adding Value to Therapeutics by Applying Biomarkers

Michael Stocum

2.1 Mission

2.2 Goals

2.3 Predicted Learning Outcomes

2.4 Introduction

2.4.1 Current Environment for Pharmaceutical and Diagnostic Product Development

2.4.2 Potential Solutions to the Challenges Confronting Pharma

2.4.2.1 Genomics and Proteomics, Metabolomics, and “Other -omics”

2.4.2.2 Translational Research

2.4.2.3 Biomarkers

2.4.3 Drug Development for Targeted Cancer Therapies

2.4.3.1 Tamoxifen in Estrogen-Receptor-Positive Breast Cancer

2.4.3.2 Trastuzumab (Herceptin) in Breast Cancers Overexpressing Her2

2.4.3.3 Imatinib (Gleevec) in Chronic Myelogenous Leukemia and Gastrointestinal Stromal Tumors

2.4.3.4 Other Targeted Therapies

2.4.4 Specific Example of Lapatinib (Tykerb)

2.4.4.1 Leveraging Biomarkers and Diagnostics to Accelerate Drug Development

2.4.4.2 Potential to Enhance Commercial Success with Companion Diagnostics

2.4.5 Personalized Medicine

2.5 Case Scenario

2.6 Timeline

2.7 Study Plan and Assignments

2.7.1 Session 1

2.7.2 Session 2

2.7.3 Session 3

2.7.4 Session 4

2.7.5 Session 5

2.7.6 Session 6

Acknowledgment

Resources
3 Product Portfolio Planning and Management in the Pharmaceutical Industry

Alan Woodall

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission</td>
<td>42</td>
</tr>
<tr>
<td>Goals</td>
<td>42</td>
</tr>
<tr>
<td>Predicted Learning Outcomes</td>
<td>43</td>
</tr>
<tr>
<td>Introduction</td>
<td>43</td>
</tr>
<tr>
<td>Preclinical Phase</td>
<td>44</td>
</tr>
<tr>
<td>Phase I</td>
<td>44</td>
</tr>
<tr>
<td>Phase II</td>
<td>44</td>
</tr>
<tr>
<td>Phase III</td>
<td>44</td>
</tr>
<tr>
<td>Marketing Application</td>
<td>44</td>
</tr>
<tr>
<td>Phase IV</td>
<td>44</td>
</tr>
<tr>
<td>Case Scenario</td>
<td>46</td>
</tr>
<tr>
<td>Timeline</td>
<td>47</td>
</tr>
<tr>
<td>Study Plan and Assignments</td>
<td>47</td>
</tr>
<tr>
<td>Session 1</td>
<td>47</td>
</tr>
<tr>
<td>Session 2</td>
<td>49</td>
</tr>
<tr>
<td>Session 3</td>
<td>51</td>
</tr>
<tr>
<td>Session 4</td>
<td>52</td>
</tr>
<tr>
<td>Session 5</td>
<td>55</td>
</tr>
<tr>
<td>Session 6</td>
<td>55</td>
</tr>
<tr>
<td>Session 7</td>
<td>55</td>
</tr>
<tr>
<td>Session 8</td>
<td>55</td>
</tr>
</tbody>
</table>

Appendix A: Method for Net Present Value Calculations 58

Appendix B: Glossary of Abbreviations and Terms 59

4 Entrepreneurship: Establishing a New Biotechnology Venture

Cedric Pearce

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission</td>
<td>62</td>
</tr>
<tr>
<td>Goals</td>
<td>62</td>
</tr>
<tr>
<td>Predicted Learning Outcomes</td>
<td>62</td>
</tr>
<tr>
<td>Introduction</td>
<td>62</td>
</tr>
<tr>
<td>Characteristics of an Entrepreneur</td>
<td>63</td>
</tr>
<tr>
<td>Twenty Questions to Determine How Entrepreneurial You Are</td>
<td>64</td>
</tr>
<tr>
<td>From Idea to Concept Evaluation</td>
<td>65</td>
</tr>
<tr>
<td>Assessing Opportunity and Writing a Business Plan</td>
<td>68</td>
</tr>
<tr>
<td>Organizing the Venture</td>
<td>71</td>
</tr>
<tr>
<td>Financing the Business</td>
<td>72</td>
</tr>
<tr>
<td>Start-Up Dynamics</td>
<td>74</td>
</tr>
<tr>
<td>Timeline</td>
<td>75</td>
</tr>
<tr>
<td>Study Plan and Assignments</td>
<td>75</td>
</tr>
<tr>
<td>Session 1</td>
<td>75</td>
</tr>
<tr>
<td>Session 2</td>
<td>76</td>
</tr>
</tbody>
</table>
5 Introduction to US Patent Law 79

Elaine T. Sale

5.1 Mission 80
5.2 Goals 80
5.3 Predicted Learning Outcomes 80
5.4 Introduction 81
5.4.1 Brief Description of US Patents 81
5.4.2 Patentable Subject Matter 83
5.4.3 Utility 84
5.4.4 Novelty 85
5.4.5 Nonobviousness 88
5.4.6 Enablement 90
5.4.7 Written Description 91
5.4.8 Best Mode 92
5.4.9 Claim Drafting 92
5.4.10 Invention and Inventorship 96
5.4.12 Patent Infringement 106
5.4.13 Patent Ownership and Intellectual Property Agreements 110
5.5 Timeline 113
5.6 Study Plan and Assignments 113
5.6.1 Session 1 113
5.6.2 Session 2 113
5.6.3 Session 3 113
5.6.4 Session 4 114
5.6.5 Session 5 114
5.6.6 Session 6 114
5.6.7 Session 7 114
5.6.8 Session 8 115
Resources 115

6 Intellectual Property Management 117

William Barrett

6.1 Mission 118
6.2 Goals 118
6.3 Predicted Learning Outcomes 119
6.4 Introduction 119
6.4.1 Economics of IP 120
6.4.2 Globalization of Innovation 121
6.4.3 Creating an IP Strategy 122
6.4.3.1 IP Vision 123
6.4.3.2 IP Plan 124
6.4.3.3 IP Team 124
6.4.4 Invention Assessment 125
6.4.4.1 Novelty 125
6.4.4.2 Probability of Technological Success (Technology Risk) 126
6.4.4.3 Invention Type 126
6.4.5 Mapping the Competitive Patent Landscape 127
6.4.5.1 Conducting a Search 128
6.4.5.2 Identification of Relevant Patent Documents 129
6.4.5.3 Mapping of Relevant Patent Documents 129
6.4.5.4 Screening Out Clearly Noninfringing Patents 132
6.4.5.5 Analyzing Potentially Infringing Patents 132
6.4.5.6 Analyzing Clearly Infringing Patents 134
6.4.6 Conclusion 135
6.5 Timeline 135
6.6 Study Plan and Assignments 135
6.6.1 Session 1 135
6.6.2 Session 2 136
6.6.3 Session 3 137
6.6.4 Session 4 138
6.6.5 Session 5 139
6.6.6 Session 6 140
6.6.7 Session 7 140
6.6.8 Session 8 140

7 Operational Excellence in Pharmaceutical Manufacturing 141
Lucia Clontz
7.1 Mission 143
7.2 Goals 143
7.3 Introduction 143
7.3.1 Overview of the Drug Manufacturing Process 143
7.3.2 A Change in Paradigm for the Pharmaceutical Industry 144
7.4 Part I – Operational Excellence: Implementing Process Improvements 145
7.4.1 Introduction to Lean Manufacturing 145
7.5 Predicted Learning Outcomes 148
7.6 Case Scenario 149
7.7 Timeline 149
7.8 Study Plan and Assignments 150
7.8.1 Session 1 150
7.8.2 Session 2 151
7.8.3 Session 3 153
7.8.4 Session 4 154
7.8.5 Session 5 154
7.8.6 Session 6 156
7.8.7 Session 7 156
7.8.8 Session 8 157
7.9 Company Supervised Practicum 157
7.10 Part II – Optimizing Existing Technologies 161
7.10.1 Introduction to Quality Control 161
7.11 Predicted Learning Outcomes 161
7.12 Case Scenario 162
7.13 Timeline 163
7.14 Study Plan and Assignments 163
7.14.1 Session 1 163
7.14.2 Session 2 164
7.14.3 Session 3 165
7.14.4 Session 4 166
7.14.5 Session 5 167
7.14.6 Session 6 168
7.14.7 Session 7 168
7.14.8 Session 8 168
7.15 Company Supervised Practicum 169
7.16 Conclusion 173

8 Aligning Behaviors and Standards in a Regulated Industry:
Design and Implementation of a Job Observation Program 175
Amy Peterson and John Shaeffer

8.1 Mission 176
8.2 Goals 176
8.3 Predicted Learning Outcome 177
8.4 Introduction 177
8.4.1 Human Error and Human Error Prevention
by Job Observation 177
8.4.2 Procedural Adherence and Human Behavior 178
8.4.3 The Necessity for Job Observation 178
8.5 Case Scenario 179
8.6 Timeline 181
8.7 Study Plan and Assignments 181
8.7.1 Session 1 181
8.7.1.1 Assignment #1 181
8.7.2 Session 2 181
8.7.2.1 Presentations 181
Preface

Graduates who secure their first jobs in industry typically spend a significant amount of time adjusting to the new environment because it is so different from the traditional university setting. Together with multiple industry professionals in the Research Triangle Park, North Carolina, I have introduced a learning method called “industry immersion learning” with the goal of easing the transition from the university to the workplace (here, the biotechnology industry).

The industry immersion method is characterized by need-based, innovation-oriented, and proactive acquisition of knowledge. The education is coordinated and supervised by academic and industry professionals in concert and promotes a high level of interaction between students and industry professionals. As the name of the method implies, students are immersed in the industry environment and tasked to excel in matters of high relevance to the company in which the training takes place. Students must adapt quickly to the new environment, create a professional network on site, become knowledgeable about the topic of study, employ innovative thinking, and meet or exceed expectations in their deliverables in a timely manner in order to succeed.

The industry immersion method has been received with enthusiasm among students and both university and industry leaders. It provides a means for the students to graduate with an industry-relevant education, and the university to provide industry with a better prepared, industry-ready workforce while simultaneously creating important university–industry networks and empowering employers to participate in curriculum design.

In an attempt to disseminate the method to a larger audience, employer alliance building and the industry immersion method are described in detail in this book, and seven industry projects, the so-called “case studies”, have been compiled and transposed to a format useful in both industry and classroom settings. Each of these sample industry case studies focuses on a particular trend and together they provide a nonexhaustive view into selected, timely topics. The logistics of teaching by immersion are outlined and a variety of parameters can be customized to match the environment in which they are taught. By consolidating these examples of industry case studies in this book, I encourage their “re-use” while simultaneously hoping to inspire the creation of many new case studies and much new collaboration between universities and industry.