DYNAMIC CHARACTERISATION OF
ANALOGUE-TO-DIGITAL CONVERTERS
THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND
COMPUTER SCIENCE

ANALOG CIRCUITS AND SIGNAL PROCESSING
Consulting Editor: Mohammed Ismail, Ohio State University

Related Titles:

DESIGN OF WIRELESS AUTONOMOUS DATALOGGER IC'S
Claes and Sansen

MATCHING PROPERTIES OF DEEP SUB-MICRON MOS TRANSISTORS
Croon, Sansen, Maes

LNA-ESD CO-DESIGN FOR FULLY INTEGRATED CMOS WIRELESS RECEIVERS
Leroux and Steyaert

SYSTEMATIC MODELING AND ANALYSIS OF TELECOM FRONTENDS AND THEIR
BUILDING BLOCKS
Vanassche, Gielen, Sansen

LOW-POWER DEEP SUB-MICRON CMOS LOGIC SUB-THRESHOLD CURRENT
REDUCTION
van der Meer, van Staveren, van Roermund

WIDEBAND LOW NOISE AMPLIFIERS EXPLOITING THERMAL NOISE
CANCELLATION
Bruccoleri, Klumperink, Nauta

SYSTEMATIC DESIGN OF SIGMA-DELTA ANALOG-TO-DIGITAL CONVERTERS
Bajdechi and Huijsing

OPERATIONAL AMPLIFIER SPEED AND ACCURACY IMPROVEMENT
Ivanov and Filanovsky

STATIC AND DYNAMIC PERFORMANCE LIMITATIONS FOR HIGH SPEED
D/A CONVERTERS
van den Bosch, Steyaert and Sansen

DESIGN AND ANALYSIS OF HIGH EFFICIENCY LINE DRIVERS FOR Xdsl
Plessens and Steyaert

LOW POWER ANALOG CMOS FOR CARDIAC PACEMAKERS
Silveira and Flandre

MIXED-SIGNAL LAYOUT GENERATION CONCEPTS
Lin, van Roermund, Leenaerts

HIGH-FREQUENCY OSCILLATOR DESIGN FOR INTEGRATED TRANSCIEVERS
Van der Tang, Kasperkovitz and van Roermund

CMOS INTEGRATION OF ANALOG CIRCUITS FOR HIGH DATA RATE TRANSMITTERS
DeRanter and Steyaert

SYSTEMATIC DESIGN OF ANALOG IP BLOCKS
Vandenbussche and Gielen

SYSTEMATIC DESIGN OF ANALOG IP BLOCKS
Cheung and Luong

LOW-VOLTAGE CMOS LOG COMPANDING ANALOG DESIGN
Serra-Graells, Rueda and Huertas

CIRCUIT DESIGN FOR WIRELESS COMMUNICATIONS
Pan, Franca and Leme

DESIGN OF LOW-PHASE CMOS FRACTIONAL-N SYNTHESIZERS
DeMuer and Steyaert

MODULAR LOW-POWER, HIGH SPEED CMOS ANALOG-TO-DIGITAL CONVERTER
FOR EMBEDDED SYSTEMS
Lin, Kenna and Hosticka
DYNAMIC CHARACTERISATION OF ANALOGUE-TO-DIGITAL CONVERTERS

by

Dominique Dallet

Laboratoire IXL-ENSEIRB,
Bordeaux, France

and

José Machado da Silva

Universidade do Porto,
INESC-Pórtio, Portugal

Springer
Contents

Preface ix
Contributing Authors xi

Introduction xv
José Machado da Silva

Glossary xvii

Part I ADC Characterisation Based on Sinewave Analysis

1 ADC Applications, Architectures and Terminology 3
José Machado da Silva, Hélio Mendonça
1. Introduction 3
2. ADCs’ applications 5
3. ADCs’ architectures 10
4. Terminology 15
5. Quantisation and A/D conversion 20
6. Output coding 27
7. Errors, non-linearity, noise, and distortion 31
8. Data acquisition and processing 40
9. Input characteristics 43

2 Sinewave Test Setup 47
Pierre-Yves Roy, Jacques Durand
1. Test Setup description 47
2. Specification of the clock and input signal 49
3. Example of filter specification 56
4. Filter selection 57
5. Taking a record of data 59

3 Time-Domain Data Analysis 61
Dominique Dallet, Djamel Haddadi, Philippe Marchegay
1. Introduction 61
2. Calculation of the dynamic parameters 62
3. Definitions 62
4. The fixed-frequency method 63
5. The four-parameter method 65
6. Definitions of THD and SNR 70
7. The multi-harmonic sine-wave fitting method 71
8. Estimation of the normalised angular frequency 73
9. Estimation of the linear parameters 74
10. On the rank of E_P 75
11. The algorithm 76
12. Multitone test to circumvent signal purity problems 77

4
Frequency-Domain Data Analysis 85
Pierre-Yves Roy, Jacques Durand
1. Discrete Fourier Transform and Fast Fourier Transform 85
2. Choice of input and clock frequencies 86
3. Windowing 86
4. Comment on the accuracy of the input frequency 88
5. Record size 90
6. Calculation of ADC dynamic parameters in the frequency domain 92

5
Code Histogram Test 105
Giovanni Chiorboli, Carlo Morandi
1. Introduction 105
2. The sampling strategy and its contribution to count variance and measurement uncertainty 108
3. Additional contributions to count uncertainty: additive noise and jitter 115
4. Factors affecting the p.d.f. of the input signal 122
5. Required record length and number of records, expression of measurement uncertainty 133
6. Choice of the coverage factor 139
7. Comparing the number of samples required by random and by synchronous sampling 141
8. Determining the transfer characteristic 142
9. Offset error and gain 143
10. Linearity errors 147
11. Appendix 148

6
Comparative Study of ADC Sinewave Test Methods 157
José Machado da Silva, Hélio Mendonça, Sara Mazoleni
1. Introduction 157
2. General considerations 159
3. Simulation results 174
4. ATE Implementation 187
5. Conclusions 213

Part II Measurement of Additional Parameters
Contents

7
Jitter Measurement 219
Pierre-Yves Roy, Jacques Durand
1. Introduction 219
2. The double beat technique 220
3. The joint probability technique 230
4. Conclusion 233

8
Differential Gain and Phase Testing 235
José Machado da Silva, Hélio Mendonça
1. Introduction 235
2. Test setup and hardware requirements 236
3. Analysis 237
4. Test results 240
5. Calculation of differential gain and phase from the test results 241

9
Step and Transient Response Measurement 243
Giovanni Chiorboli, Carlo Morandi
1. Introduction 243
2. Settling time and transition duration of step response 245
3. Frequency response measurement 249

10
Hysteresis Measurement 255
Giovanni Chiorboli, Carlo Morandi
1. Introduction 255
2. Test conditions 256
3. A practical case 257
4. Collection of samples in $H_{C\uparrow}$ and $H_{C\downarrow}$ 258
5. Some warning 260

References 265

Index 279
Preface

The present book is one of the outcomes of the project DYNAD - Methods and Draft Standards for the Dynamic Characterization and Testing of Analogue-to-Digital Converters. This project was held between 1997 and 2000, supported by the European Commission under the Standards, Measurements and Testing Programme, reference SMT4-CT98 2214, within the Framework IV activities. Its consortium comprised the University of Parma - Italy, the École Nationale Superieure d’Electronique, Informatique & Radiocommunications de Bordeaux - France, Thales (former TTM-Thomson CSF) - France, Italtel Spa - Italy, Infineon Technologies-Development Center Villach - Austria, and INESC-Porto - Portugal. Besides the authors of the different chapters of this book, other people contributed with their work to the start and success of the initiative. We acknowledge the efforts of Hubert Pernull, Otto Wiedenbauer, and Andreas Bertl from Infineon, Roberto Scotti from Italtel, Jorge Duarte and José Matos from INESC-Porto, M. Heuber and M. Zirnheld from Thales, and C. Rebai from ENSEIRB.

A state of the art overview of the methods and procedures employed for characterising the dynamic performance behaviour of analogue-to-digital converters using sinusoidal stimuli, is presented in this book. The three classical methods — histogram, sine wave fitting, and spectral analysis — are thoroughly described, and new approaches are proposed to circumvent some of their limitations.

This is a must-have compendium, which can be used by both academics and test professionals, to understand the fundamental mathematics underlining the algorithms of ADC testing, and as a handbook to help the engineer in the most important and critical details for their implementation.

DOMINIQUE DALLET, JOSÉ MACHADO DA SILVA
Contributing Authors

CHIORBOLI, Giovanni graduated in Electronic Engineering from the University of Bologna, Italy, in 1987. Until 1990, he was with the University of Bologna. Since 1990, he has been with the University of Parma, Italy, where he is currently an Associate Professor of Electronic Measurements. His scientific interests are in the field of electronic instrumentation, analogue-to-digital and digital-to-analogue modelling and testing, and electrical characterization of semiconductor devices and materials for microelectronics.

DALLET, Dominique was born in Rochefort/Mer, France, on July 3, 1964. He obtained his PhD degree in Electrical Engineering in 1995 from the University of Bordeaux 1, where he is currently a professor at the Electronic Engineering School of Bordeaux (ENSEIRB). His main research activities, carried-out at the IXL laboratory, focus on mixed-signal circuit design and testing, digital and analogue signal processing, and programmable devices’ applications. His interests include also digital design and its application in BIST structures for the characterization of embedded A/D converters, as well as, digital signal processing applied to nondestructive techniques based on time-frequency representation.

HADDADI, Djamal was born in 1971. He received the Engineer degree in physics and the Master degree in signal processing in 1996 from the Institut National Polytechnique de Grenoble, and the PhD degree in Electronics from the Université Bordeaux 1. He is a product responsible at STMicroelectronics since 2000. His main interests include ATE test and qualification of high performance analogue and mixed-signal ICs.
DURAND, Jacques obtained his PhD degree from the Université de Paris Sud — Orsay-IEF in 1984. Since then he worked at THOMSON-CSF (Orsay) as an expert on analogue signal processing and IC measurement and testing. His main interests concerned high-speed ADC test and characterization, with emphasis on noise and jitter analysis. Along his career he participated as an examiner in the evaluation of several PhD thesis, and published various conference and journal papers on ADC roadmap and characterisation. He holds a patent on a phase noise measurement set-up.

MACHADO da SILVA, José received the Licenciatura and PhD, both in Electrical and Computer Engineering from the Faculdade de Engenharia da Universidade do Porto (FEUP), Portugal, in 1984 and 1998, respectively. He joined FEUP in 1984 as a lecturer, and INESC-Porto in 1991 as a senior researcher, where he has collaborated on and supervised national and European projects on analogue and mixed-signal testing. He is currently an Assistant Professor at FEUP and a project leader at Instituto de Engenharia de Sistemas e de Computadores (INESC-Porto), with teaching and research responsibilities on design and testing of electronic circuits. His research interests include analogue and mixed-signal design for testability, new testing methodologies, analogue and digital signal processing, and VLSI design.

MARCHEGAY, Philippe was born in France in 1942. He received his PhD in 1966 and the "Doctorat en Sciences Physiques" degree in 1979 from the University of Bordeaux (France) about the topic of the study of metastability of synchronizer circuits and coherence faults of random access sequential networks. At present his research interests concern functional testing of A/D converters and their design. He is professor at the graduate engineering school, Ecole Nationale Supérieure d'Electronique Informatique et Radiocommunications de Bordeaux (ENSEIRB) of which he ensured the direction between 1999 and 2004.

MAZZOLENI, Sara was born in Milano, Italy, in 1967. She received the degree in Solid State Physics at the University of Milano in 1991. From 1990 until 1992 she worked as a researcher studying the non-linear behaviour of solid state lasers. From 1992 until 2001, she worked in Italtel SpA as test engineer of analogue and mixed-signal electronic components for telecommunication equipments. Now she is Supplier Quality Manager in Italtel Spa.
MENDONÇA, Hélio Sousa was born in Porto, Portugal, in 1968. He received the Licenciatura and PhD Degrees, both in Electrical and Computer Engineering from the Faculdade de Engenharia da Universidade do Porto (FEUP), Portugal, in 1991 and 2004 respectively. He joined FEUP in 1994, where he is now an Assistant Professor. He is also a Senior Researcher at Instituto de Engenharia de Sistemas e de Computadores (INESC-Porto) since 1995. His main research interests are digital signal processing and dynamic testing of ADCs.

MORANDI, Carlo graduated in Electronic Engineering at the University of Bologna in 1971. He worked at the University of Bologna as a research assistant, then as an associate professor of Electronic Instrumentation. Full professor of Applied Electronics at the University of Ancona since 1986, in 1988 he moved to the Faculty of Engineering of the University of Parma. His scientific interest is focused on the design and testing of mixed-signal integrated circuits and on the development of dedicated electronic instrumentation. He coordinated several national and international research projects, among them the "Standards, Measurements and Testing" project DYNAD of the European Commission concerning the definition of standard test procedures for the dynamic characterization of A/D converters, which originated the present book. He is author or co-author of over 100 scientific publications on international journals or proceedings of international conferences.

ROY, Pierre-Yves received the Engineer Diploma of the Ecole Nationale Superieure De Telecommunication de Bretagne ENSTB in 1995. He started his career working for Thomson-CSF (Thales now); first for Thomson-CSF Airsys (Thales Air Defence Systems) as a radar receiver designer, and then for Thomson-CSF Technologies and Methods (Thales research and Technology) as an expert in data conversion. When he was in Thales, his main areas of interest concerned high dynamic signal receivers and the functional testing of ADCs. In 2000, he joined EADS Telecom to manage the design of the architecture (and of the associated components) of their 3G secured radiocommunication terminals. He is now terminal architect for EADS Telecom.
Introduction

José Machado da Silva

ADCs are, eventually, the most pervasive analogue blocks in electronic systems. With the advent of powerful digital signal processing and digital communication techniques, ADCs are fast becoming critical components for system’s performance and flexibility. Knowing accurately all the parameters that characterise their dynamic behaviour is crucial, on one hand to select the most adequate ADC architectures and characteristics for each end application, and on the other hand, to understand how they affect performance bottlenecks in the signal processing chain.

At present, most of the signal processing performed in electronic systems is becoming digital, and the role of the ADCs placed at the borders of the digital domain acquires a particular relevance, since the signal degradation introduced by these components cannot normally be recovered by subsequent processing. Both the markets of stand-alone ADCs and of ADC macrocells to be embedded in complex systems-on-chip, benefit from the availability of performance parameters accurately describing their expected behaviour, and of clearly specified test methods to be used for their measurement.

When the project DYNAD started, the standardization of ADC test procedures was not so well developed. Two standards existed, in particular, at that time — the IEC 60748 and the IEEE Std 1057. The former covers only quasi-static operation, while the second deals with dynamic testing but, being addressed at digital waveform recorders requires some adaptations to cover ADCs. A first aim of DYNAD project was then, to contribute to the improvement of the European rules concerning test methods for ADCs, by proposing an integration within IEC 60748 addressing the parameters specifying the dynamic behaviour of ADCs, measurement conditions, and data processing algorithms. By the end of year 2000 a working group from the IEEE Instrumentation and Measurement Society Technical Committee (TC-10) completed the IEEE 1241 Standard for Analog to Digital Converters. This standard, as well as...
contributions from the DYNAD project, are now being incorporated into an IEC standard on dynamic testing of ADCs. Other initiatives have been carried-out concerning standardization of ADC testing methods. One can also mention EUPAS (EUropean Project for ADC-based devices Standardization), and the IMEKO Technical Committee 4 (A/D and D/A Metrology WorkGroup).

The main objective of the DYNAD project was the study and evaluation of ADC testing methods based on the use of sinewave test stimulus. A second aim was to investigate and propose new test methods to circumvent the limits of the measurement instrumentation, which is strongly challenged by today’s high resolution, high speed converters. Techniques for the measurement of parameters required by specific applications (e.g. audio hi-fi) and for the debugging of new converter designs were also investigated. Dissemination of the knowledge gathered during the activity was the third objective.

That work is now compiled in this book, which is structured in two main parts. Part one comprises chapters one to six. The first one provides an overview of the most important ADCs’ architectures and respective fields of application. An introduction to the most relevant nomenclature and definitions of terms is also presented. Chapter two describes the generic architecture of an ADC test setup, and guidelines and best practice procedures are proposed in order to guarantee reliable test results. Chapters 3, 4, and 5 are devoted to the description of dynamic test techniques using sinewaves, respectively, sinewave fitting (time domain data analysis), discrete Fourier transform (frequency domain analysis), and code histogram test (statistical domain analysis). These techniques are thoroughly described, as well as the fundamental mathematical background behind the equations to be used to obtain ADCs’ characterization parameters provided in each case. A comparison among these three methods is presented in chapter 6. The objective is not to find the best or the worst methods, but mainly to compare how they behave when test conditions are not ideal and to identify their requirements in terms of test time and volume of data. Examples of ATE implementation are also included.

The second part comprises chapters 7 to 10, which provide additional information to test for other relevant parameters, such as jitter, differential gain and phase, step and transient response, and hysteresis.