Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:
- Methods critically evaluated by leading scientists
- Background information and detailed experimental procedures
- Schemes and tables which illustrate the reaction scope
Date of publication: November 21, 2007

Copyright and all related rights reserved, especially the right of copying and distribution, multiplication and reproduction, as well as of translation. No part of this publication may be reproduced by any process, whether by photostat or microfilm or any other procedure, without previous written consent by the publisher. This also includes the use of electronic media of data processing or reproduction of any kind.

This reference work mentions numerous commercial and proprietary trade names, registered trademarks and the like (not necessarily marked as such), patents, production and manufacturing procedures, registered designs, and designations. The editors and publishers wish to point out very clearly that the present legal situation in respect of these names or designations or trademarks must be carefully examined before making any commercial use of the same. Industrially produced apparatus and equipment are included to a necessarily restricted extent only and any exclusion of products not mentioned in this reference work does not imply that any such selection of exclusion has been based on quality criteria or quality considerations.

Warning! Read carefully the following: Although this reference work has been written by experts, the user must be advised that the handling of chemicals, microorganisms, and chemical apparatus carries potentially life-threatening risks. For example, serious dangers could occur through quantities being incorrectly given. The authors took the utmost care that the quantities and experimental details described herein reflected the current state of the art of science when the work was published. However, the authors, editors, and publishers take no responsibility as to the correctness of the content. Further, scientific knowledge is constantly changing. As new information becomes available, the user must consult it. Although the authors, publishers, and editors took great care in publishing this work, it is possible that typographical errors exist, including errors in the formulas given herein. Therefore, it is imperative that and the responsibility of every user to carefully check whether quantities, experimental details, or other information given herein are correct based on the user's own understanding as a scientist. Scale-up of experimental procedures published in Science of Synthesis carries additional risks. In cases of doubt, the user is strongly advised to seek the opinion of an expert in the field, the publishers, the editors, or the authors. When using the information described herein, the user is ultimately responsible for his or her own actions, as well as the actions of subordinates and assistants, and the consequences arising therefrom.
As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work *Houben–Weyl Methods of Organic Chemistry* will be published starting in the year 2000.

To reflect the new broader need and focus, this new edition has a new title, *Science of Synthesis, Houben–Weyl Methods of Molecular Transformations*. *Science of Synthesis* will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of *Science of Synthesis* will provide chemists with the most reliable methods to solve their synthesis problems. *Science of Synthesis* will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make *Science of Synthesis* the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

The Editorial Board

D. Bellus (Basel, Switzerland)
E. N. Jacobsen (Cambridge, USA)
S. V. Ley (Cambridge, UK)
R. Noyori (Nagoya, Japan)
M. Regitz (Kaiserslautern, Germany)
P. J. Reider (New Jersey, USA)
E. Schaumann (Clausthal-Zellerfeld, Germany)
I. Shinkai (Tsukuba, Japan)
E. J. Thomas (Manchester, UK)
B. M. Trost (Stanford, USA)

October 2000
Volume 39: Sulfur, Selenium, and Tellurium

Preface ... V

Table of Contents .. XIII

Introduction
N. Kambe ... 1

39.1 Product Class 1: Alkanesulfonic Acids and Acyclic Derivatives
J. Drabowicz, P. Kielbasiński, P. Łyzwa, A. Zając, and M. Mikołajczyk 17

39.2 Product Class 2: Acyclic Dialkyl Sulfoxides and Derivatives
J. Drabowicz, J. Lewkowski, W. Kudelska, and T. Girek 123

39.3 Product Class 3: Alkanesulfinic Acids and Acyclic Derivatives
S. Braverman, M. Cherkinsky, and S. Levinger 187

39.4 Product Class 4: Acyclic Dialkyl Sulfoxides and Derivatives
J. L. García Ruano, M. B. Cid, A. M. Martín-Castro, and J. Alemán 245

39.5 Product Class 5: Alkanethiols
J. V. Comasseto and A. S. Guarezemini 391

39.6 Product Class 6: Acyclic Alkanethiolates

39.6.1 Product Subclass 1: Alkanethiolates of Group 1, 2, and 13–15 Metals
J. V. Comasseto and A. S. Guarezemini 413

39.6.2 Product Subclass 2: Alkanethiolates of Group 3–12 Metals
A. Polo and J. Real .. 437

39.7 Product Class 7: Acyclic Dialkyl Sulfoxides
S. Fujiwara and M. Toyofuku ... 469

39.8 Product Class 8: Acyclic Trialkyloxosulfonium and Trialkylsulfonium Salts and Derivatives
Y. Tang and X.-L. Sun .. 501

39.9 Product Class 9: Alkanesulfenic Acids and Acyclic Derivatives
J. Drabowicz, P. Kielbasiński, P. Łyzwa, and M. Mikołajczyk 543

39.10 Product Class 10: Acyclic Di- and Polysulfides
R. Sato and T. Kimura .. 573

39.11 Product Class 11: Thiiranes and Derivatives
M. Saito and J. Nakayama ... 589

39.12 Product Class 12: Thietanes, 1,2-Oxathietanes, and Derivatives
E. Block ... 659
39.12.1 **Product Subclass 1: Thietanes and Derivatives**
E. Block ... 661

39.12.2 **Product Subclass 2: 1,2-Oxathietanes and Derivatives**
J. Drabowicz and J. Lewkowski 711

39.12.3 **Product Subclass 3: 1,2-Dithietanes, 1,2-Thiazetidines, 1,2-Thiaphosphetanes, and Derivatives of Various Oxidation States**
N. Kambe ... 727

39.13. **Product Class 13: Thiolanes, Larger Rings, and Derivatives of Various Oxidation States**
R. Sato and T. Kimura ... 733

39.13.1 **Product Subclass 1: Cyclic Alkanesulfonic Acid Derivatives**
R. Sato and T. Kimura ... 735

39.13.2 **Product Subclass 2: Cyclic Dialkyl Sulfoxides and Derivatives**
R. Sato and T. Kimura ... 745

39.13.3 **Product Subclass 3: Cyclic Alkanesulfinic Acid Derivatives**
R. Sato and T. Kimura ... 751

39.13.4 **Product Subclass 4: Cyclic Dialkyl Sulfoxides and Derivatives**

39.13.5 **Product Subclass 5: Cyclic Alkanethiolates of Group 1, 2, and 13–15 Metals**
N. Kambe ... 811

39.13.6 **Product Subclass 6: Cyclic Alkanethiolates of Group 3–12 Metals**
A. Polo and J. Real ... 813

39.13.7 **Product Subclass 7: Cyclic Dialkyl Sulfides**
M. Segi ... 833

39.13.8 **Product Subclass 8: Cyclic Trialkyloxosulfonium and Trialkylsulfonium Salts and Derivatives**
Y. Tang and X.-L. Sun ... 851

39.13.9 **Product Subclass 9: Cyclic Alkanesulfenic Acid Derivatives**
T. Wirth ... 879

39.13.10 **Product Subclass 10: Cyclic Dialkyl Di- and Polysulfides**
R. Sato and T. Kimura ... 885

39.14 **Product Class 14: Alkaneselenonic Acids and Acyclic Derivatives**
J. Drabowicz, P. Kielbasiński, P. Łyzwa, and M. Mikołajczyk 903

39.15 **Product Class 15: Acyclic Dialkyl Selenones and Derivatives**
J. Drabowicz, J. Lewkowski, W. Kudelska, and T. Girek 909

39.16 **Product Class 16: Alkaneseleninic Acids and Acyclic Derivatives**
S. Braverman, M. Cherkinsky, and S. Levinger 915
Overview

39.17 **Product Class 17: Acyclic Dialkyl Selenoxides and Derivatives**
T. Shimizu and N. Kamigata .. 929

39.18 **Product Class 18: Alkaneselenols**
J. V. Comassetto and A. S. Guarezemini 941

39.19 **Product Class 19: Acyclic Alkaneselenolates**

39.19.1 **Product Subclass 1: Alkaneselenolates of Group 1, 2, and 13–15 Metals**
J. V. Comassetto and A. S. Guarezemini 947

39.19.2 **Product Subclass 2: Alkaneselenolates of Group 3–12 Metals**
A. Polo and J. Real ... 961

39.20 **Product Class 20: Acyclic Dialkyl Selenides**
M. Segi ... 977

39.21 **Product Class 21: Acyclic Trialkylselenonium Salts and Derivatives**
Y. Tang and X.-L. Sun ... 995

39.22 **Product Class 22: Alkaneselenenic Acids and Acyclic Derivatives**
T. Wirth ... 1005

39.23 **Product Class 23: Acyclic Di- and Polyselenides**
R. Sato and T. Kimura .. 1013

39.24 **Product Class 24: Seleniranes and Derivatives**
M. Saito and J. Nakayama .. 1023

39.25 **Product Class 25: Selenetanes and Derivatives**
E. Block ... 1033

39.26 **Product Class 26: Selenolanes, Larger Rings, and Derivatives of Various Oxidation States**
R. Sato and T. Kimura .. 1043

39.26.1 **Product Subclass 1: Cyclic Alkaneselenonic Acid Derivatives**
R. Sato and T. Kimura .. 1045

39.26.2 **Product Subclass 2: Cyclic Dialkyl Selenones and Derivatives**
R. Sato and T. Kimura .. 1047

39.26.3 **Product Subclass 3: Cyclic Alkaneseleninic Acid Derivatives**
R. Sato and T. Kimura .. 1049

39.26.4 **Product Subclass 4: Cyclic Dialkyl Selenoxides and Derivatives**
T. Shimizu and N. Kamigata .. 1053

39.26.5 **Product Subclass 5: Cyclic Alkaneselenolates of Group 1, 2, and 13–15 Metals**
N. Kambe ... 1059

39.26.6 **Product Subclass 6: Cyclic Alkaneselenolates of Group 3–12 Metals**
A. Polo and J. Real ... 1063
39.26.7 **Product Subclass 7: Cyclic Dialkyl Selenides**
M. Segi ... 1069

39.26.8 **Product Subclass 8: Cyclic Trialkylselenonium Salts and Derivatives**
Y. Tang and X.-L. Sun ... 1083

39.26.9 **Product Subclass 9: Cyclic Alkaneselenenic Acid Derivatives**
T. Wirth ... 1093

39.26.10 **Product Subclass 10: Cyclic Dialkyl Di- and Polyselenides**
R. Sato and T. Kimura ... 1097

39.27 **Product Class 27: Alkanetelluronic Acids and Acyclic Derivatives**
J. Drabowicz, P. Kiełbasiński, P. Łyz˙wa, and M. Mikołajczyk 1109

39.28 **Product Class 28: Acyclic Dialkyl Tellurones and Derivatives**
J. Drabowicz, J. Lewkowski, W. Kudelska, and T. Girek 1111

39.29 **Product Class 29: Alkanetellurinic Acids and Acyclic Derivatives**
S. Braverman, M. Cherkinsky, and S. Levinger ... 1117

39.30 **Product Class 30: Acyclic Dialkyl Telluroxides and Derivatives**
T. Shimizu and N. Kamigata ... 1127

39.31 **Product Class 31: Alkanetellurols**
J. V. Comasseto and A. S. Guarezemini .. 1137

39.32 **Product Class 32: Acyclic Alkanetellurolates**

39.32.1 **Product Subclass 1: Alkanetellurolates of Group 1, 2, and 13–15 Metals**
J. V. Comasseto and A. S. Guarezemini .. 1139

39.32.2 **Product Subclass 2: Alkanetellurolates of Group 3–12 Metals**
A. Polo and J. Real ... 1145

39.33 **Product Class 33: Acyclic Dialkyl Tellurides**
M. Segi ... 1163

39.34 **Product Class 34: Acyclic Trialkytelluronium Salts and Derivatives**
Y. Tang and X.-L. Sun ... 1179

39.35 **Product Class 35: Alkanetellurenic Acids and Acyclic Derivatives**
T. Wirth ... 1193

39.36 **Product Class 36: Acyclic Di- and Polytellurides**
R. Sato and T. Kimura ... 1197

39.37 **Product Class 37: Telluriranes and Derivatives**
M. Saito and J. Nakayama ... 1203

39.38 **Product Class 38: Telluretanes and Derivatives**
E. Block ... 1205
39.39 Product Class 39: Tellurolanes, Larger Rings, and Derivatives of Various Oxidation States
R. Sato and T. Kimura .. 1207

39.39.1 Product Subclass 1: Cyclic Alkanetelluronic Acid Derivatives
R. Sato and T. Kimura .. 1209

39.39.2 Product Subclass 2: Cyclic Dialkyl Tellurones and Derivatives
R. Sato and T. Kimura .. 1211

39.39.3 Product Subclass 3: Cyclic Alkanetellurinic Acid Derivatives
R. Sato and T. Kimura .. 1213

39.39.4 Product Subclass 4: Cyclic Dialkyl Telluroxides and Derivatives
T. Shimizu and N. Kamigata .. 1215

39.39.5 Product Subclass 5: Cyclic Alkanetellurolates of Group 1, 2, and 13–15 Metals
N. Kambe ... 1217

39.39.6 Product Subclass 6: Cyclic Alkanetellurolates of Group 3–12 Metals
A. Polo and J. Real ... 1219

39.39.7 Product Subclass 7: Cyclic Dialkyl Tellurides
M. Segi ... 1225

39.39.8 Product Subclass 8: Cyclic Trialkyltelluronium Salts and Derivatives
Y. Tang and X.-L. Sun ... 1233

39.39.9 Product Subclass 9: Cyclic Alkanetellurenic Acid Derivatives
T. Wirth ... 1243

39.39.10 Product Subclass 10: Cyclic Dialkyl Di- and Polytellurides
R. Sato and T. Kimura .. 1245

Keyword Index ... 1251

Author Index ... 1317

Abbreviations .. 1379
Table of Contents

Introduction
N. Kambe

39.1 Product Class 1: Alkanesulfonic Acids and Acyclic Derivatives
J. Drabowicz, P. Kielbasiński, P. Łyzwa, A. Zając, and M. Mikołajczyk

39.1.1 Synthesis of Product Subclass 1

39.1.1.1 Method 1: Additions to Methylene sulfur tetrafluoride

39.1.1.2 Method 2: Addition of Sulfur Pentfluoride Halides to Alkenes

39.1.2 Product Subclass 2: Alkanesulfonyl Halides

39.1.2.1 Synthesis of Product Subclass 2

39.1.2.1.1 Method 1: Sulfochlorination Reactions: Formation of the C—S Bond

39.1.2.1.2 Method 2: Synthesis from Sulfinic Acid Derivatives

39.1.2.2 Method 2: Synthesis from Sulfinic Acid Derivatives

39.1.2.2.1 Variation 1: Oxidation of Sulfinic Acids or Their Salts with Halogens or Halogen-Containing Reagents

39.1.2.2.2 Variation 2: Oxidative Halogenation of Magnesium Alkanesulfonates formed In Situ

39.1.2.2.3 Variation 3: Oxidative Chlorination of Sulfinic Acid Esters

39.1.2.3 Method 3: Synthesis from Divalent Organosulfur Derivatives

39.1.2.3.1 Variation 1: Oxidation of Thiols or Disulfides with Halogens

39.1.2.3.2 Variation 2: Reaction of S-Alkylisothiuronium Salts with Chlorine in Aqueous Solution

39.1.2.3.3 Variation 3: Reaction of Sulfides with Chlorine in Aqueous Solution

39.1.2.3.4 Variation 4: Oxidation of Sulphenyl Halides

39.1.2.3.5 Variation 5: Reaction of Thiocyanates with Chlorine in Aqueous Solution

39.1.2.3.6 Variation 6: Oxidative Chlorination of Thioesters

39.1.2.3.7 Variation 7: Chlorolysis of Bunte Salts

39.1.2.4 Method 4: Synthesis from Sulfonic Acids and Their Salts

39.1.2.4.1 Variation 1: Reaction of Sulfonic Acids and Their Salts with Phosphorus Pentachloride or Pentabromide

39.1.2.4.2 Variation 2: Reaction with Phosphoryl Chloride

39.1.2.4.3 Variation 3: Reaction with Thionyl Chloride

39.1.2.4.4 Variation 4: Reaction with Sulfuryl Chloride/Triphenylphosphine

39.1.2.4.5 Variation 5: Reaction with Dichloromethyl Methyl Ether

39.1.2.5 Method 5: Synthesis from Sulfonic Anhydrides
39.1.2.16 Method 6: Ring Opening of Fluoro-1,2-oxathietane 2,2-Dioxides 35
39.1.2.17 Method 7: Synthesis from Sulfonyl Halides by Halide Ion Exchange 36
39.1.2.18 Methods 8: Miscellaneous Approaches .. 37
39.1.3 Product Subclass 3: Alkanesulfonic Acids .. 38
39.1.3.1 Synthesis of Product Subclass 3 .. 38
39.1.3.1.1 Method 1: Direct Sulfonation of Hydrocarbons 39
39.1.3.1.1 Variation 1: Reaction of Alkanes with Sulfuric Acid, Sulfur Trioxide, and Derivatives .. 39
39.1.3.1.2 Variation 2: Reaction of Alkanes with Sulfur Dioxide and Oxygen 39
39.1.3.1.3 Variation 3: Reactions between Unsaturated Hydrocarbons and Sulfuric Acid or Its Derivatives .. 40
39.1.3.1.4 Variation 4: Reaction of Alkenes with the Hydrogen Sulfite Ion 41
39.1.3.1.5 Variation 5: Photosensitized Reactions between Alkenes and Sulfur Dioxide 41
39.1.3.1.6 Variation 6: Palladium-Catalyzed Additions of Sulfur Dioxide to Alkenes 42
39.1.3.1.7 Method 2: Oxidation of Low-Valency Sulfur Derivatives 42
39.1.3.1.8 Variation 1: Oxidation of Thiols and Their Derivatives......................... 42
39.1.3.1.9 Variation 2: Oxidation of Sulfonic Acids ... 43
39.1.3.1.10 Method 3: Reaction of Organometallic Reagents with Sulfur Trioxide Complexes ... 44
39.1.3.1.11 Method 4: Interconversions of Other Sulfonyl Derivatives 44
39.1.3.1.12 Variation 1: Hydrolysis of Sulfonyl Halides 44
39.1.3.1.13 Variation 2: Hydrolysis of Sulfonylic Acid Esters 45
39.1.3.1.14 Variation 3: Ring Opening of Cyclic Sulphonates (Sultones) 45
39.1.3.1.15 Variation 4: Cleavage of Alkyl Perfluoroalkyl Sulfoates 46
39.1.3.1.16 Method 5: Nucleophilic Substitution with Sulfite Anions 46
39.1.3.1.17 Variation 1: Reaction of Haloalkanes with Inorganic Sulfites 46
39.1.3.1.18 Variation 2: Reaction of Alkyl Sulfates and Sulphonates with Inorganic Sulfites 47
39.1.3.1.19 Variation 3: Ring Opening of Oxiranes and Aziridines with Sulfite Anions 48
39.1.3.2 Applications of Product Subclass 3 in Organic Synthesis 48
39.1.3.2.1 Method 1: Alkanesulfonic Acids as Catalysts for Condensation Reactions 48
39.1.4 Product Subclass 4: Alkanesulfonic Acid Esters 49
39.1.4.1 Synthesis of Product Subclass 4 .. 49
39.1.4.1.1 Method 1: Synthesis from Sulfonic Acids and Their Salts 49
39.1.4.1.1 Variation 1: Direct Esterification ... 49
39.1.4.1.2 Variation 2: Alkylation of a Sulfonate Anion 50
39.1.4.1.3 Method 2: Synthesis from Sulfonyl Halides 50
39.1.4.1.4 Method 3: Synthesis from Sulfinic Anhydrides 51
39.1.4.1.5 Method 4: Synthesis from Sulphonamides 52
39.1.4.1.6 Method 5: Synthesis from Diazot Compounds and Sulfur Dioxide 53
39.1.4.1.7 Method 6: Synthesis from Sulfenes .. 53
39.1.4.1.8 Method 7: Synthesis from Sulfinates and Sulfinate Esters 53
39.1.4.1.9 Method 8: Rearrangement of Sulfites ... 54
39.1.4.1.10 Variation 1: [2,3]-Sigmatropic Rearrangements of Allyl Sulfoates 54
39.1.4.1.11 Variation 2: Rearrangements of Dialkyl Sulfoates 54