Practical Pediatric Gastrointestinal Endoscopy

George Gershman
Associate Professor of Pediatrics
David Geffen School of Medicine
Chief, Division of Pediatrics Gastroenterology and Nutrition
HARBOUR-UCLA Medical Center
Torrance, California, USA

Marvin Ament
Professor of Pediatrics
David Geffen School of Medicine
Chief, Division of Pediatric Gastroenterology and Nutrition
UCLA Medical Center
Los Angeles, California, USA
Practical Pediatric Gastrointestinal Endoscopy
To my life muse, my wife Irina, my talented daughter Zhenya, and in memory of my remarkable parents.

George Gershman
Practical Pediatric Gastrointestinal Endoscopy

George Gershman
Associate Professor of Pediatrics
David Geffen School of Medicine
Chief, Division of Pediatrics Gastroenterology and Nutrition
HARBOR-UCLA Medical Center
Torrance, California, USA

Marvin Ament
Professor of Pediatrics
David Geffen School of Medicine
Chief, Division of Pediatric Gastroenterology and Nutrition
UCLA Medical Center
Los Angeles, California, USA
Contents

Contributors, viii

1 Introduction, 1

2 Settings and Staff, 2
The endoscopy unit, 2
Pediatric endoscopy nurse, 3
Disinfections of the endoscopes and accessories, 4
Documentation, 4
Further reading, 5

3 Equipment, 6
Overview, 6
Insertion tube, 6
Video image capture, 16
“Reading” the image created on the CCD, 18
Types of CCDs, 20
History of endoscope CCD development, 21
Shape of displayed image, 22
Reproduction of color, 23
Reproduction of motion, 32
Transillumination, 33
Laser therapy with video endoscopes, 33
Image resolution, 34
Color reproduction accuracy, 35
Troubleshooting, 35
Endoscope reprocessing, 35
Summary, 43
Further reading, 43

4 Patient Preparation, 45
Pediatric-monitored sedation and anesthesia for diagnostic and therapeutic procedures in endoscopy, 46
During sedation, 51
Postsedation care, 52
Specific sedation techniques, 52
Further reading, 57
5 Diagnostic Upper Endoscopy

Technique, 60
- Preparation for esophageal intubation, 60
- Assembling the equipment and preprocedure checkup, 61
- Endoscope handling, 62
- Technique of esophageal intubation, 63
- Indications for upper endoscopy, 77
- Push enteroscopy/jejunoscopy, 94
- Further reading, 97

6 Therapeutic Upper GI Endoscopy, 102

- Benign esophageal stricture, 102
- Pneumatic dilation in achalasia, 103
- Foreign bodies, 105
- Endoscopic hemostasis, 109
- Percutaneous endoscopic gastrostomy, 117
- Nasojejunal tube placement, 125
- Further reading, 127

7 Pediatric Colonoscopy, 132

Introduction, 132
- Indications for colonoscopy, 132
- Preparation of the patient for colonoscopy, 134
- Equipment, 137
- Magnetic imaging system, 138
- Informed consent and preprocedure preparation, 139
- Sedation for colonoscopy, 139
- Embryology of the colon, 140
- Endoscopic anatomy, 142
- Torque-steering technique, 147
- Exploration of the sigmoid colon and sigmoid–descending junction, 152
- Splenic flexure and transverse colon, 154
- Hepatic flexure, ascending colon, and cecum, 155
- Terminal ileum, 156
- Complications, 157
- Common pathology, 159
- Further reading, 168

8 Polypectomy, 171

Basic principles of electrosurgery, 171
- Snare loops, 173
- Polypectomy routine, 175
- Safety routine, 175
- Safety conditions and techniques, 176
CONTENTS

Complications, 180
Further reading, 180

9 Chromoendoscopy, 181
 Indications, 181
 Application technique, 184
 Recognition of the lesions, 189
 Further reading, 193

10 Wireless Capsule Endoscopy, 194
 History, 194
 The GIVEN M2A system, 194
 Localization, 195
 Suspected blood indicator, 196
 Indication for use, 196
 Diagnostic yield, 196
 Contraindications to capsule endoscopy, 197
 Pacemaker safety, 197
 Bowel preparation, 197
 Promotility agents, 198
 Endoscopic assistance, 198
 Complications, 198
 Outcome of capsule endoscopy, 198
 Pediatric patients, 198
 Further reading, 199

Index, 201
Contributors

David Barlow
Vice-President Research and Development Olympus America Inc., Center Valley, PA (Chapter 3; Equipment)

Judith Brill
Professor of Pediatrics and Anesthesiology, Chief, Division of Pediatric Critical Care, UCLA Medical Center, Geffen School of Medicine, Los Angeles, CA, (Chapter 4; Pediatric-monitored sedation and anesthesia for diagnostic and therapeutic procedures in endoscopy)

Marsha Kay
Department of Pediatric Gastroenterology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH, (Chapter 6; Percutaneous endoscopic gastrostomy)

Alberto Ravelli
Gastroenterology and Hepatology Service, University Department of Pediatrics, Children’s Hospital, Spedali Civili, Brescia, Italy (Chapter 9)

Jorge Vargas
Professor of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, UCLA Medical Center, Geffen School of Medicine, Los Angeles, CA, (Chapter 6; Endoscopic hemostasis)

Robert Wyllie
Chairman, Department of Pediatric Gastroenterology and Nutrition Cleveland Clinic Foundation, Cleveland, OH, (Chapter 6; Percutaneous endoscopic gastrostomy)
Introduction

In the late 1960s and early 1970s, sporadic attempts to perform esophagogastroduodenoscopy (EGD) using fiberscopes designed for adults were made in children. However, the actual “birth” of pediatric EGD occurred a few years later when prototypes of pediatric flexible gastrosopes and panendoscopes became commercially available. Subsequently, the pediatric community received unequivocal evidence of very low rates of complications related to upper gastrointestinal (GI) endoscopy, high diagnostic yields, cost-effectiveness due to safe use of the procedure in outpatient settings, and the ability to perform a variety of therapeutic procedures successfully adopted from adult GI practice. This led to widespread use of EGD in pediatrics.

Flexible GI endoscopy is a unique method of investigation of the GI tract in real time. It links direct observation of the object, with or without magnification and application of different dyes, with target biopsy, ultrasound technique, and variety of therapeutic procedures. It is an invasive procedure by definition. When applied to pediatric patients, safety becomes a major priority. In order to minimize morbidity associated with pediatric GI endoscopy, the endoscopist, especially the beginner, should learn all technical aspects of the procedure including the following:

- Endoscopic equipment such as endoscopes, light sources, biopsy forceps, snares, graspers, needles, electrosurgical devices, and all other accessories.
- Appropriate setting of the endoscopic equipment and doses of commonly used medications and solutions such as epinephrine, glucagon, and sclerosing agents.
- Proper techniques of diagnostic and therapeutic procedures.

The endoscopist should also become familiar with age-related anatomic variations of the GI tract and specific responses of the central nervous system, respiratory, and cardiovascular systems to artificial conditions created by the procedure itself. These include intubations of the esophagus, increased intra-abdominal pressure, elevation of the diaphragm, and stretching of the mesentery.
THE ENDOSCOPY UNIT

Pediatric gastrointestinal (GI) endoscopy can be performed in an inpatient or outpatient endoscopy unit, at the patient’s bedside, and in the operating room.

The endoscopy unit is usually designated for elective procedures. Typically, it has five functional areas:

- The preprocedure area consists of two major spaces:
 - One is a dedicated waiting and reception area.
 - The other serves as a space where parental consent can be obtained, the patient can be undressed and examined, and intravenous (IV) access may be established.
- Procedure area with examining rooms
- Recovery area
- Staff area with a work station for units with more than three rooms
- Storage space and a section dedicated to cleaning and disinfections of endoscopes.

Except in children’s hospitals, the volume of pediatric procedure is usually not enough to run a separate endoscopic GI unit. Frequently, pediatric GI procedures must be scheduled and performed in the endoscopy unit shared with adult gastroenterologists.

Endoscopy units that are shared between pediatric and adult gastroenterologists must have a nursing and ancillary supporting staff that is comfortable and trained to work with both children and adults. They must recognize the difference in the needs of the patients. Although some units that serve both adults and children may dedicate a special room for pediatric patients, it is far more flexible for all rooms to be equipped to work with both children and adults.

Most pediatric bedside endoscopy is done in intensive care units because of the critical state of the patients. Bedside pediatric endoscopy is typically limited to children with acute GI bleeding or complicated recovery after bone-marrow or solid organ transplantation, those who are in isolation, admitted to pediatric, neonatal intensive care units, or pediatric emergency department. It is usually a complex and labor-intensive procedure in critically ill patients, which requires full cooperation between skilled endoscopist, residents, endoscopy nurses, and attending pediatric physician or intensivist;
2 good functional conditions of all endoscopic equipment;
3 a well-organized and appropriately equipped mobile endoscopy station.

The mobile station should be loaded with a light source, electrosurgical unit, biopsy forceps, retractable needles, polypectomy snares, graspers, rubber bands, epinephrine, sclerosants, different sizes bite-guards, biopsy mounting sets, fixatives, culture media, cytology brushes, and slides. The bedside area should be spacious enough to accommodate the endoscopic station, a portable monitor, and equipment for general anesthesia. Two separate suction canisters should be available for endoscopy and oral or tracheal aspiration.

The position of the bed should be adjusted for the height of the endoscopist and special indication for the procedure; for example, reverse Trendelenburg position is advantageous for patients with acute GI bleeding to reduce the risk of aspiration and to improve visibility of the cardia and subcardia areas in children with stress ulcer, which is not uncommon after neuro- or cardiac surgery. A similar position may be useful for patients with GI bleeding due to portal hypertension and gastric varices. Endoscopic procedures in the neonatal intensive care unit should be performed under a warmer.

Pediatric GI endoscopy in the operating room is restricted to children with obscure GI bleeding, Peutz-Jeghers syndrome, or other circumstances, which require intraoperative enteroscopy or precise localization of the gastrointestinal lesions or assistance during surgery; for example, a placement of the string for retrograde bouginage of esophageal stricture. The endoscopy team should be familiar with the operating room environment and regulations.

PEDIATRIC ENDOSCOPY NURSE

A well-trained nurse is the key to a successful pediatric endoscopy team. This individual should be skilled in many areas such as:
1 How to communicate with the parents and the child in order to decrease the degree of stress and anxiety before the procedure;
2 Knowing how to establish and secure IV access before and, if necessary, during the procedure;
3 Preparing of all monitoring devices including EKG leads, pulse oximeter sensors, blood pressure cuffs appropriate for the child’s size, and life support equipment such as nasal cannulas, proper size oxygen masks, ambu-bags, and intubation tray;
4 Selecting and preparing appropriate endoscopic equipment for the procedure;
5 Knowing how to monitor patients during sedation, procedure, and recovery;
6 Knowing how to properly mount the biopsy specimens and preparation of the cytological slides;
7 Being skillful in mechanical and chemical cleansing of the equipment and disinfection of the working space;
8 Quality control maintenance.

It is a great help to have such a nurse on call 24 hours a day.

DISINFECTIONS OF THE ENDOSCOPES AND ACCESSORIES

Thorough mechanical cleaning of the endoscope and nondisposable instruments is an essential part of any procedure, but especially a bedside endoscopy. It is an important initial phase of disinfection and also quite an effective preventive measure against clogging of the air/water channel and future mechanical failure of very expensive endoscopes. The final cleaning of the instruments is usually performed with glutaraldehyde, which destroys viruses and bacteria within a few minutes. Endoscopes are allowed to soak typically for a 20-minute period, although high-risk situations including known or suspected mycobacterial infection may require longer periods of time. The chemical itself can exacerbate reactive airway disease, asthma, or dermatitis in predisposed patients or staff. For this reason, instruments are thoroughly rinsed in water and allowed to dry prior to their next use. Air/water and suction channels are further rinsed in a solution containing 70% alcohol and also require compressed air drying to prevent bacterial growth. Instruments should be hung and stored in a vertical position in a well-ventilated cupboard to ensure dryness and minimize chance of bacterial growth.

More detailed description of disinfection technique is presented in Chapter 3.

DOCUMENTATION

Different types of photodocumentation are available during endoscopy. The films or Polaroid photographs of the findings seen at endoscopy have been replaced with digital photo printers in early 1990s. A real-time videotaping is the least practical but currently the cheapest method. It used to be popular for teaching purpose. Although a digital transformation of VHS recording into the laser disk with subsequent snapshot images is now feasible, it is going to be replaced soon with DVD recorders specifically designed for endoscopic procedures.

A modern digital file system allows the endoscopist to store and print quality digital prints on a regular paper, although such equipment is costly and not routinely available. It also allows
one to generate the report of just-completed procedures and supplement the medical chart with important descriptive and visual information.

FURTHER READING

Waye JD, Rich M. Planning an Endoscopy Suite for Office and Hospital. New York: Igaki-Shoin Medical Publisher; 1990.