African Landscapes
Interdisciplinary Approaches
AFRICAN LANDSCAPES
Edited by Michael Bollig and Olaf Bubenzer

AS PASTORALISTS SETTLE:
Social, Health, and Economic Consequences of the Pastoral Sedentarization in Marsabit District, Kenya
Elliot Fratkin and Eric Abella Roth

RISK MANAGEMENT IN A HAZARDOUS ENVIRONMENT:
A Comparative Study of Two Pastoral Societies
Michael Bollig

SEEKING A RICHER HARVEST:
The Archaeology of Subsistence Intensification, Innovation and Change
Edited by Tina L. Thurston and Christopher T. Fisher

STAYING MASAAI?:
Livelihoods, Conversation, and Development in the East African Rangelands

For more information about this series, including the most recent titles, please visit the series homepage at www.springer.com/series/6877
African Landscapes

Interdisciplinary Approaches

Edited by

Michael Bollig

Institute of Cultural and Social Anthropology
University of Cologne
Cologne, Germany

and

Olaf Bubenzer

Department of Geography
University of Heidelberg
Heidelberg, Germany
Preface

Landscape has been a crucial concept to produce, store, and to present knowledge on human–environment interactions in various academic disciplines and in works of art. It has been bemoaned that the concept is ambiguous and inadequate for scientific discourses because of its vagueness, its equivocalness, and its proneness to ideological cooptation. The sheer number of attempts at a more precise definition bespeaks the uneasiness scientists feel when dealing with the term. Despite its analytical shortcomings the use of landscape as a key concept to analyse and interpret human–environment interaction is rather increasing than decreasing.

Not only have the cultural studies discovered the term with its unrivalled appeal to stress boundedness, integration, and heterogeneity at the same time, but also anthropology, cultural studies, and history have undergone a spatial turn during the last two decades integrating the landscape concept into their disciplinary lexicon. By refocussing on the landscape concept historians and anthropologists emphasise that environments and historical and cultural processes are linked by a great number of interrelated feedback loops. Landscapes are not merely scenery and stage but are intimately interwoven with history and culture. At the same time the concept is reevaluated in the geosciences where it had been discarded since the 1970s in favour of more problem-centred and less ambiguous concepts. Landscape also has a continued appeal to artists expressing their thoughts and feelings about man’s placement in and interaction with nature (Schama, 1995).

The widespread use of the landscape concept corresponds with an era in which global environmental change has indeed changed most natural landscapes into heavily used environments. Various land-use activities have transformed large parts of the globe’s surface and human activities have appropriated one third to one half of global ecosystem production (Foley et al., 2005, p. 570). Croplands and pastures constitute major parts of the planet’s surface. The clearing of tropical forests may lead to drier and warmer regional climates in the near future, whereas the clearing of boreal forests may result in cooler climates in the North (Nemani et al., 2003).

Escobar’s claim (1999, p. 1) that we have entered an epoch which is defined by the sense of being “after nature” is as true as his tenet that geoeccological processes are increasingly reshaped by human activities and constituted by discursive practices. Escobar’s claim resounds with the wording of Noble Prize laureate Paul Crutzen, who has named the recent geological phase “anthropocene” (Crutzen & Steffen, 2003). Crutzen and Escobar emphasise the increasing human

v
dependence on these very processes and resources and the growing understanding that major environmental processes are beyond the control of humans: even if we succeed in reducing CO$_2$ output the effects of global warming will transform landscapes profoundly over the next decades to come (IPCC, 2007). Glaciers will vanish and coastal areas will become inundated; some deserts may expand and others shrink. Large dams, water carriers, and the expansion of megacities transform landscapes as much as the artificial exclusion of humans from specific sites and entire biomes designated as parks and wilderness areas. However, our potential to control and correct geoecological processes is very limited. Escobar’s emphasis that environments resist being fully coopted by humans, is borne out by numerous contemporary reports on major catastrophes and the increasing vulnerability of ecosystems.

As human–environment feedback loops define most of the basic stressors that constitute “human life” in relation to both biology and geoecological processes, there is a need for an interdisciplinary approach to landscape research. It is odd that most of the current literature is usually linked more or less clearly to one scientific field, either being affiliated with the natural sciences or the humanities. True interdisciplinary approaches to landscapes bridging this gap are exceedingly rare. It is here that this volume wants to make an impact: over the past ten years the contributors to this volume have cooperated in an interdisciplinary programme – the Collaborative Research Centre ACACIA (Arid Climate, Adaptation and Cultural Innovation in Africa) – dealing with the interrelation between cultural processes and geoecological dynamics in Africa’s arid areas. The concept ‘landscape’ has been crucial in all projects, be they Egyptological, Africanist, anthropological, geographical, botanical, historical, or archaeological.

The attempt to work along a unified definition of the landscape concept was given up early on. Rather it was deemed to be more rewarding to have each discipline explore its own access to the topic and from there explore bridges between different disciplinary approaches. The belief in a diversity of landscape approaches made it necessary to explicate the epistemological fundamentals of one’s own conceptual base. However, there has been a basic understanding that ‘for constructivists, the challenge lies in learning to incorporate into their analyses the biophysical basis of reality; for realists it is examining their frameworks from the perspective of their historical constitution’ (Escobar, 1999, p. 3).

Michael Bollig and Olaf Bubenzer

Literature

Contents

Contributors xi

List of Tables xiii

List of Figures xv

Visions of Landscapes: An Introduction 1
Michael Bollig

Part I Arid Landscapes: Detection and Reconstruction – Perspectives from Earth Sciences and Archaeology

1. Landscape in Geography and Landscape Ecology, Landscape Specification, and Classification in Geomorphology 41
 Olaf Bubenzer

2. Towards a Reconstruction of Land Use Potential: Case Studies from the Western Desert of Egypt 57
 Andreas Bolten, Olaf Bubenzer, Frank Darius, and Karin Kindermann

3. Landscape Ecology of Savannas from Disturbance Regime to Management Strategies 79
 Anja Linstädter

4. Quantitative Classification of Landscapes in Northern Namibia using an ASTER Digital Elevation Model 105
 Gunter Menz and Jochen Richters

5. Risks and Resources in an Arid Landscape: An Archaeological Case Study from the Great Sand Sea, Egypt 119
 Heiko Riemer
6. **Resources, Use Potential, and Basic Needs:**
 A Methodological Framework for Landscape Archaeology
 Tilman Lenssen-Erz and Jörg Linstädter

Part II State, Power, and Control in Africa’s Arid Landscapes:
Perspectives from the Historical Sciences

7. **The ‘Landscapes’ of Ancient Egypt: Intellectual Reactions to the Environment of the Lower Nile Valley**
 Michael Herb and Philippe Derchain

8. **A Land of Goshen: Landscape and Kingdom in Nineteenth Century Eastern Owambo (Namibia)**
 Patricia Hayes

9. **From the Old Location to Bishops Hill: The Politics of Urban Planning and Landscape History in Windhoek, Namibia**
 Jan-Bart Gewald

10. **Landscape and Nostalgia: Angolan Refugees in Namibia Remembering Home and Forced Removals**
 Inge Brinkman

Part III Identity, Memory, and Power in Africa’s Arid Landscapes:
Perspectives from Social and Cultural Anthropology

11. **The Anthropological Study of Landscape**
 Martin Rössler

12. **Kinship, Ritual, and Landscape Amongst the Himba of Northwest Namibia**
 Michael Bollig

13. **The Spectator’s and the Dweller’s Perspectives: Experience and Representation of the Etosha National Park, Namibia**
 Ute Dieckmann

14. **Is This a Drought or Is This a Drought and What Is Really Beautiful? Different Conceptualisations of the Khuiseb Catchment (Central Namibia) and Their Consequences**
 Nina Gruntkowski
Contents

15. Where Settlements and the Landscape Merge:
 Towards an Integrated Approach to the Spatial Dimension
 of Social Relations
 Thomas Widlok
 407

Part IV Language and the Conceptualisation and Epistemics of
 African Arid Landscapes: Perspectives from Linguistics
 and Oral History

16. Two Ways of Conceptualising Natural Landscapes:
 A Comparison of the Otjiherero and Rumanyo
 Word Cultures in Namibia
 Wilhelm J.G. Möhlig
 431

17. Landscape Conceptualisation in Mbukushu:
 A Cognitive-Linguistic Approach
 Birte Kathage
 455

18. Otjiherero Praises of Places: Collective Memory Embedded
 in Landscape and the Aesthetic Sense of a Pastoral People
 Jekura U. Kavari and Laura E. Bleckmann
 473

Index
 501
Contributors

Laura E. Bleckmann, University of Leuven, Leuven, Belgium

Michael Bollig, Institute of Cultural and Social Anthropology, University of Cologne, Cologne, Germany

Andreas Bolton, Department of Geography, University of Cologne, Cologne, Germany

Inge Brinkman, African Studies Center, Leiden University, Leiden, Netherlands

Olaf Bubenzer, Department of Geography, University of Heidelberg, Heidelberg, Germany

Frank Darius, Department of Geography, University of Cologne, Cologne, Germany

Phillipe Derchain, Seminar of Egyptology, University of Cologne, Cologne, Germany

Ute Dieckmann, Institute of Cultural and Social Anthropology, University of Cologne, Cologne, Germany

Jan-Bart Gewald, African Studies Center, Leiden University, Leiden, Netherlands

Nina Gruntkowski, Department of Geography, University of Cologne, Cologne, Germany

Patricia Hayes, History Department, University of the Western Cape, Bellville, South Africa

Michael Herb, Department of Geography, University of Bonn, Bonn, Germany

Birte Kathage, Africa Consulting, Cologne, Germany

Jekura U. Kavari, University of Namibia, Windhoek, Namibia

Karin Kindermann, Department of Geography, University of Cologne, Cologne, Germany
Tilman Lenzen-Erz, African Research Center, University of Cologne, Germany
Anja Linstädter, Botanical Institute, University of Cologne, Cologne, Germany
Jörg Linstädter, African Research Center, University of Cologne, Germany
Gunter Menz, Department of Geography, University of Bonn, Bonn, Germany
Wilhelm J.G. Möhlig, African Studies Center, Leiden University, Leiden, Netherlands
Jochen Richters, Department of Ecology, Technische Universität Berlin, Berlin, Germany
Heiko Riemer, African Research Center, University of Cologne, Germany
Martin Rössler, Institute of Cultural and Social Anthropology, University of Cologne, Cologne, Germany
Thomas Widlok, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
List of Tables

Table 2.1 Archaeological attributes, which have been used for the main ordination matrix; abbreviations, categories, and number (n) of respective cases by region 66

Table 2.2 Environmental variables, which have been used for the secondary ordination matrix; abbreviations, categories, and number (n) of all classified locations for the background 67

Table 3.2 Comparison of the disturbance regime (1) in a near-natural savanna landscape (Etosha National Park), (2) in a landscape utilised according to pastoral-nomadic practice (Kaokoland), and (3) in an overutilised landscape (Kaokoland, close to permanent settlements). All landscapes are situated in northwestern Namibia. Some types of disturbances affect the tree layer (TL) and the grass layer (GL) to different degrees. Consequently, the recovery potential (i.e., the time required to return to the original state) also differs. Disturbance events with a high spatial extent and disturbance events with medium to low recovery potential are printed in bold 94

Table 3.3 Divergent economic objectives of different user groups in southern African savannas in relation to the ecological status. The ‘desired’ disturbance regime of a landscape is realised by specific management practices 96

Table 4.1 Number of samples for various subset sizes (e.g., 50 × 50 matrix) and percentage coverages for the three landscape units (UKH, ESC, and LKH) 111

Table 4.2 Variance of the first principal component (PCA1) and the cumulative values of principal components 1 through 5 (ΣPCAi, i = 1 through 5) for varying subset sizes for the Upper Kunene Hills (UKH) and Lower Kunene Hills (LKH) study area (sample size is 30) 112

Table 4.3 Variance for the first principal component (PCA1) and cumulative values of principal components 1 through 5 (ΣPCAi, i = 1 through 5) when varying coverage fractions
for the optimized subset sizes (from Table 4.2) for the
study areas

Table 5.1 Cumulative evaporation rates per month after rainfall
at the beginning of May (calculated on values from Dakhla;
source of daily potential evaporation: Griffiths, 1972

Table 16.1 Comparative List of Vowels
Table 16.2 Comparative List of Consonants
Table 16.3 Comparative List of Noun Classes
Table 16.4 Semantic Structure of Mountainous Areas in Otjiherero
Table 16.5 Terms Denoting Parts of River
Table 16.6 Terms Denoting Parts of River Embankment
Table 16.7 Terms Denoting Hippo Activities
Table 16.8 Semantic Structure of River Landscape in Rumanyo
Table 17.1 Feature Type
Table 17.2 Emphasised prototypical features (type PART)
assigned to landscape entities in Mbukushu
List of Figures

Figure 0.1 Albrecht Altdorfer, Danube Landscape with Castle near Wörth (Courtesy Bildarchiv Preußischer Kulturbesitz) 4
Figure 0.2 Pieter Brueghel; The Fall of the Icarus (Courtesy Bildarchiv Preußischer Kulturbesitz) 5
Figure 0.3 Humboldt, ‘Geographie der Pflanzen in den Tropenländern’ (geography of plants in the tropic countries; Courtesy Bildarchiv Preußischer Kulturbesitz) 7
Figure 0.4 Panorama illustrating clearly discernible types and peculiar characteristics of landscape (Passarge, 1921) 8
Figure 0.5 Designed and undesigned German culture landscape. (Gröning & Wolschke-Bulmahn, 1987; Courtesy Lit.-Verlag) 10
Figure 0.6 Representation of a landscape of potential habitat (green) of the Mexican spotted owl (Strix occidentalis lucida) in the Southwest (United States) as an island model and a graph (Urban & Keitt, 2001; Courtesy Ecological Society of America, ESA) 12
Figure 0.7 Google-Earth presentation of the Darfur conflict (Courtesy Google-Earth in cooperation with the Holocaust Memorial Museum in Washington) 15
Figure 0.8 James Lyell’s discovery of the archival character of sediments (Lyell, 1830) 17
Figure 1.1 Relation between size and persistence of landforms as well as the approximate human impact (Changed after Dikau, 1988 and Ahnert, 1996) 46
Figure 1.2 Direction, type, strength of curvature, slope, extension, and height of landform elements (Adapted from Dikau, 1988) 48
Figure 1.3 Box model (schematic) of structural taxonomical elements as basis for the georelief classification 50
Figure 2.1 Archaeological sites within the Western Desert of Egypt recorded during archaeological surveys by B.O.S. and ACACIA (1980–2002). Displayed are three different spatial scale factors according to the scale discussion. 1: Landsat 5 image (30 m resolution); 2: ASTER image (15 m resolution); 3: Quickbird image (0.61 m resolution) 59