Equine Neurology
Contents

Contributors List, vii
Preface, ix
Video Clips Demonstrating Clinical Signs, x

Section 1: Foundations of Clinical Neurology
1 Overview of Neuroanatomy, 3
 Caroline Hahn and Jerry Masty
2 Cerebrospinal Fluid and the Blood–Brain Barrier, 21
 Martin Furr
3 Immunology of the Central Nervous System, 36
 Martin Furr
4 Pharmaceutical Considerations for Treatment of Central Nervous System Disease, 46
 Véronique A. Lacombe and Martin Furr
5 Fundamental Neurophysiology, 58
 Craig Johnson and Caroline Hahn

Section 2: Clinical Equine Neurology
6 Examination of the Nervous System, 67
 Martin Furr and Stephen Reed
7 Differential Diagnosis and Management of Horses with Seizures or Alterations in Consciousness, 79
 Véronique A. Lacombe and Martin Furr
8 Differential Diagnosis of Equine Spinal Ataxia, 93
 Martin Furr
9 Differential Diagnosis and Management of Cranial Nerve Abnormalities, 99
 Robert J. MacKay
10 Sleep and Sleep Disorders in Horses, 123
 Joseph J. Bertone
11 Headshaking, 130
 Monica Aleman and Kirstie Pickles
12 Differential Diagnosis of Urinary Incontinence and Cauda Equina Syndrome, 139
 Melissa Hines
13 Differential Diagnosis of Muscle Tremor and Paresis, 149
 Amy L. Johnson
14 Electrodiagnostic Evaluation of the Nervous System, 157
 George M. Strain, Frank Andrews, and Veronique A. Lacombe
15 Anesthetic Considerations for Horses with Neurologic Disorders, 184
 Adriana G. Silva
16 The Basics of Equine Neuropathology, 191
 Fabio Del Piero and John L. Robertson
17 Diagnostic Imaging of the Equine Nervous System, 215
 Katherine Garrett

Section 3: Specific Disease Syndromes
18 Equid Herpesvirus–Associated Myeloencephalopathy, 225
 Lutz S. Goehring
19 Mosquito-Borne Infections Affecting the Central Nervous System, 233
 Maureen T. Long
20 Contagious Neurological Diseases, 262
 Maureen T. Long
21 Bacterial Infections of the Central Nervous System, 273
 Martin Furr
22 Equine Protozoal Myeloencephalitis, 285
 Martin Furr and Daniel K. Howe
23 Parasitic Infections of the Central Nervous System, 306
 Martin Furr
24 Miscellaneous Infections of the Central Nervous System, 314
 Martin Furr
25 Disorders Associated with Clostridial Neurotoxins: Botulism and Tetanus, 319
 Martin Furr
26 Neurodegenerative Disorders, 328
 Robert J. MacKay
27 Equine Hepatic Encephalopathy, 343
 Tom Divers
28 Cervical Vertebral Stenotic Myelopathy, 349
 Amy L. Johnson and Stephen Reed
<table>
<thead>
<tr>
<th>Page</th>
<th>Section Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Electrolyte Abnormalities and Neurologic Dysfunction in Horses, 368</td>
<td>Ramiro E. Toribio</td>
</tr>
<tr>
<td>30</td>
<td>Cervical Articular Process Disease, Fractures, and Other Axial Skeletal Disorders, 386</td>
<td>Richard Hepburn</td>
</tr>
<tr>
<td>31</td>
<td>Congenital Malformation of the Nervous System, 401</td>
<td>Martin Furr</td>
</tr>
<tr>
<td>32</td>
<td>Central Nervous System Trauma, 406</td>
<td>Yvette S. Nout-Lomas</td>
</tr>
<tr>
<td>33</td>
<td>Disorders of the Peripheral Nervous System, 429</td>
<td>Martin Furr</td>
</tr>
<tr>
<td>34</td>
<td>Equine Neurotoxic Agents and Conditions, 437</td>
<td>Martin Furr</td>
</tr>
<tr>
<td>35</td>
<td>Neonatal Encephalopathy and Related Conditions, 455</td>
<td>Martin Furr</td>
</tr>
<tr>
<td>36</td>
<td>Miscellaneous Movement Disorders, 465</td>
<td>Caroline Hahn</td>
</tr>
<tr>
<td>37</td>
<td>Stereotypic and Behavior Disorders, 472</td>
<td>Carissa L. Wickens and Katherine A. Houpt</td>
</tr>
<tr>
<td>38</td>
<td>Miscellaneous Conditions, 484</td>
<td>Martin Furr</td>
</tr>
<tr>
<td></td>
<td>Index, 488</td>
<td></td>
</tr>
</tbody>
</table>
Contributors List

Monica Aleman, MVZ Cert, PhD, Dip ACVIM
(Internal Medicine, Neurology)
College of Veterinary Medicine
University of California
Davis, USA

Frank Andrews, DVM, MS, Dip ACVIM
School of Veterinary Medicine
Louisiana State University
Baton Rouge, USA

Joseph J. Bertone, DVM, MS, Dip ACVIM
College of Veterinary Medicine
Western University
Pomona, USA

Fabio Del Piero, DVM, PhD, Dip ACVP
School of Veterinary Medicine
Louisiana State University
Baton Rouge, USA

Tom Divers, DVM, Dip ACVIM
College of Veterinary Medicine
Cornell University
Ithaca, USA

Martin Furr, DVM, Dip ACVIM, PhD
Marion duPont Scott Equine Medical Center
Virginia-Maryland Regional College of Veterinary Medicine
Leesburg, USA

Katherine Garrett, DVM, Dip ACVS
Rood and Riddle Equine Hospital
Lexington, USA

Lutz S. Goehring, DVM, MS, PhD, Dip ACVIM
College of Veterinary Medicine
Ludwig Maximilians University
Munich, Germany

Caroline Hahn, DVM, MSc, PhD, Dip ECEIM, Dip ECVN, MRCVS
Royal (Dick) School of Veterinary Studies
The University of Edinburgh
Midlothian, UK

Richard Hepburn, BVSc, MS, Cert EM(Int Med), Dip ACVIM, MRCVS
B & W Equine Hospital
Gloucestershire, UK

Melissa Hines, DVM, Dip ACVIM
College of Veterinary Medicine
University of Tennessee
Knoxville, USA

Katherine A. Houpt, VMD, PhD, Dip ACVB
College of Veterinary Medicine
Cornell University
Ithaca, USA

Daniel K. Howe, PhD
Gluck Equine Center
University of Kentucky
Lexington, USA

Amy L. Johnson, DVM, Dip ACVIM
New Bolton Center
University of Pennsylvania School of Veterinary Medicine
Kennett Square, USA

Craig Johnson, BVSc, PhD, DVA, Dip ECVA
Institute of Veterinary, Animal and Biomedical Sciences
Massey University
Palmerstown North, New Zealand

Véronique A. Lacombe, DVM, PhD, Dip ACVIM, Dip ECEIM
Center for Veterinary Health Sciences
Oklahoma State University
Stillwater, USA

Maureen T. Long, DVM, MS, PhD, Dip ACVIM
College of Veterinary Medicine
University of Florida
Gainesville, USA

Robert J. MacKay, BVSc, PhD, Dip ACVIM
College of Veterinary Medicine
University of Florida
Gainesville, USA
Jerry Masty, DVM, MS, PhD
College of Veterinary Medicine
The Ohio State University
Columbus, USA

Yvette S. Nout-Lomas, DVM, MS, PhD, Dip ACVIM, Dip ACVECC
College of Veterinary Medicine
Colorado State University
Fort Collins, USA

Kirstie Pickles, BCMS, MSc, Dip ECEIM, PhD
Scarsdale Equine Veterinary Practice
Derby, UK

Stephen Reed, DVM, MS, Dip ACVIM
Rood and Riddle Equine Hospital
Lexington, USA

John L. Robertson, VMD, PhD
Virginia Tech
Virginia-Maryland Regional College of Veterinary Medicine
Leesburg, USA

Adriana G. Silva, DVM, MS
Faculty of Veterinary Medicine
University of Montreal
Saint Hyacinthe, Canada

George M. Strain, PhD
School of Veterinary Medicine
Louisiana State University
Baton Rouge, USA

Ramiro E. Toribio, DVM, MS, PhD, Dip ACVIM
College of Veterinary Medicine
The Ohio State University
Columbus, USA

Tim Vojt, MA
College of Veterinary Medicine
The Ohio State University
Columbus, USA

Carissa L. Wickens, PhD
Department of Animal Sciences
University of Florida
Gainesville, USA
Preface

It has been 6 years since the publication of the first edition of *Equine Neurology*, and new information continues to accumulate about equine neurology; hence, it seems timely to offer the second edition of this work. Our goal in the first edition was to provide a comprehensive review of the field of equine neurology and to structure a textbook that provided not only the clinical descriptions of various equine neurologic disorders but also foundation material to assist in understanding neurologic dysfunction in general. With the second edition, we have attempted to continue in this same theme, with the basic organization remaining the same—however, all chapters have been reviewed, modified, and updated—some a little and others more substantially. In addition, we have added chapters on imaging of the nervous system, neuronal physiology, sleep disorders, head shaking, differential diagnosis of muscle trembling and weakness, and cervical articular process joint disease. The chapters on equine neuropathology and electrodiagnostic evaluation have been substantially expanded. The major change is the inclusion of videos illustrating many of the described conditions. These videos were selected to be representative and high-quality instructional videos to aid the reader in their understanding of the text and equine nervous system disease in general.

We wish to acknowledge the hard work and talent of the many individuals who contributed to this work. The time commitment necessary to produce high-quality chapters is substantial, and this edition would not have been produced without their hard work and input. We hope that you read and study this text, use it aid your clinical work, and most of all enjoy learning about equine neurology.

Martin Furr
Stephen Reed
Video Clips Demonstrating Clinical Signs

This book is accompanied by a companion website:

www.wiley.com/go/furr/neurology

The website includes:

• Web exclusive videos
SECTION 1
Foundations of Clinical Neurology
In order to evaluate a patient with a neurologic disorder, a basic understanding of the structure and function of the nervous system is necessary. The goal of this chapter is not to expose the reader to intricate and perhaps daunting detail but rather to present a basic overview of neuroanatomy, highlighting some of the peculiarities of equine neuroanatomy. A basic understanding of the nervous system from an anatomic and functional perspective is an absolute prerequisite to interpreting the neurological examination and to assess if there is indeed a lesion in the nervous system and, if so, where the lesion is located (the “anatomic diagnosis”).

Organization of the nervous system

The nervous system is organized into central and peripheral divisions. The central nervous system (CNS) is composed of the brain and spinal cord and is located within the skull and vertebral column. The peripheral nervous system (PNS) is formed by neuronal cell processes that extend from the central axis to the periphery. There are also collections of neuronal cell bodies in the periphery (“ganglia”) that contribute to the components of the peripheral system. Functionally, the nervous system is divided into the somatic nervous system, a system under voluntary control that innervates skeletal muscle and whose sensory branch reaches consciousness, and the autonomic nervous system, which is concerned with subconsciously regulating visceral smooth muscle structures. Both the somatic and nervous system and CNS have central and peripheral motor and sensory components.

Development

The nervous system begins as a thickening of the embryonic layer identified as ectoderm. The initial growth of the neural ectoderm forms a thickened layer of cells identified as the neural plate. The neural groove is evident as a depression in the neural plate. As continued growth of the developing system occurs, neural folds develop at the margins of the neural plate caused by migration of the cells in a dorsal direction. Eventually, the neural folds meet and fuse at the dorsal midline thereby forming a cylindrical structure identified as the neural tube. This simplified explanation of the formation of the neural tube is shown in Figure 1.1.

As the neural tube is forming, cells in the region of the neural folds pinch off and migrate throughout the developing body. These are the neural crest cells that differentiate to become various structures in the adult: spinal ganglia, sensory ganglia associated with some of the cranial nerves, autonomic ganglia associated with various body systems, cells of the adrenal medulla and, interestingly, melanocytes.

Closure of the neural tube begins in the midsection of the developing embryo and progresses in a cranial and caudal direction. The opening at each end of the tube is identified as the neural pore. If complete closure of either neural pore is arrested during development, congenital malformations may be evident after birth such as anencephaly, which results in decreased formation of the cerebral hemispheres. In extreme conditions, the hemispheres may be completely absent. Failure of closure of the caudal neuropore results in spina bifida. This condition presents as varying degrees of lack of closure and fusion of the neural tissue and the bony tissue of the vertebral canal that would normally enclose the caudal portion of the spinal cord.

To understand the basic generalized arrangement of the adult nervous system, certain facets of development should be kept in mind. As the neural tube completes its closure, it becomes a fluid-filled cylindrical structure that serves as the template for further development of the adult structures. Segments of the neural tube undergo differential growth to become the adult divisions and