E S S E N T I A L S O F R E S T E N O S I S
Therapeutic Lipidology, edited by Michael H. Davidson, MD, Kevin C. Maki, PhD, and Peter P. Tioh, MD, PhD, 2007

Essentials of Restenosis: For the Interventional Cardiologist, edited by Henricus J. Duckers, MD, PhD, Patrick W. Serruys, MD, and Elizabeth G. Nabel, MD, 2007

Cardiac Drug Therapy, Seventh Edition, by M. Gabriel Khan, MD, FRCP, 2007

Cardiovascular Magnetic Resonance Imaging, edited by Raymond Y. Kwong, MD, 2007

Management of Acute Pulmonary Embolism, edited by Stavros Konstantinides, MD, 2007

Stem Cells and Myocardial Regeneration, edited by Marc S. Penn, MD, PhD, 2007

Handbook of Complex Percutaneous Carotid Intervention, edited by Jacqueline Saw, MD, Jose Exaire, MD, David S. Lee, MD, Sanjay Yadav, MD, 2007

The Art and Science of Cardiac Physical Examination: With Heart Sounds and Pulse Wave Forms on CD, by Narasimhan Ranganathan, MD, Vahe Sivaciyan, MD, and Franklin B. Saksena, MD, 2006

Cardiovascular Biomarkers: Pathophysiology and Disease Management, edited by David A. Morrow, MD, 2006

Cardiovascular Disease in the Elderly, edited by Gary Gerstenblith, MD, 2005

Platelet Function: Assessment, Diagnosis, and Treatment, edited by Martin Quinn, MB, BCh BAO, PhD, and Desmond Fitzgerald, MD, FRCP, FESC, APP, 2005

Diabetes and Cardiovascular Disease, Second Edition, edited by Michael T. Johnstone, MD, CM, FRCP(C), and Aristides Veyes, MD, DSc, 2005

Angiogenesis and Direct Myocardial Revascularization, edited by Roger J. Laham, MD, and Donald S. Baim, MD, 2005

Interventional Cardiology: Percutaneous Noncoronary Intervention, edited by Howard C. Herrmann, MD, 2005

Principles of Molecular Cardiology, edited by Marschall S. Runge, MD, and Cam Patterson, MD, 2005

Heart Disease Diagnosis and Therapy: A Practical Approach, Second Edition, by M. Gabriel Khan, MD, FRCP(London), FRCP(C), FACP, FACC, 2005

Cardiovascular Genomics: Gene Mining for Pharmacogenomics and Gene Therapy, edited by Mohan K. Raižda, PhD, Julian F. R. Paton, PhD, Michael J. Katovich, PhD, and Sergey Kasparov, MD, PhD, 2005

Surgical Management of Congestive Heart Failure, edited by James C. Fang, MD and Gregory S. Cooper, MD, 2005

Cardiopulmonary Resuscitation, edited by Joseph P. Ornato, MD, FACP, FACC, FACEP and Mary Ann Peberdy, MD, FACC, 2005

CT of the Heart: Principles and Applications, edited by U. Joseph Schoepf, MD, 2005

Coronary Disease in Women: Evidence-Based Diagnosis and Treatment, edited by Leslee J. Shaw, PhD and Rita F. Redberg, MD, FACC, 2004

Cardiac Transplantation: The Columbia University Medical Center/New York-Presbyterian Hospital Manual, edited by Niloo M. Edwards, MD, Jonathan M. Chen, MD, and Pamela A. Mazzeo, 2004

Heart Disease and Erectile Dysfunction, edited by Robert A. Kloner, MD, PhD, 2004

Complementary and Alternative Cardiovascular Medicine, edited by Richard A. Stein, MD and Mehmet C. Oz, MD, 2004

Nuclear Cardiology, The Basics: How to Set Up and Maintain a Laboratory, by Frans J. Th. Wackers, MD, PhD, Wendy Brun, BS, CNMT, and Barry L. Zaret, MD, 2004

ESSENTIALS OF RESTENOSIS
For the Interventional Cardiologist

Edited by
HENRICUS J. DUCKERS, MD, PhD
Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands

ELIZABETH G. NABEL, MD
The Nabel Lab, Genome Technology Branch, NHGRI Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD

and

PATRICK W. SERRUYS, MD, PhD
Thoraxcenter, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands

HUMANA PRESS
TOTOWA, NEW JERSEY
Restenosis remains the major obstacle in the way of the successful clinical outcome of percutaneous coronary interventions and has inspired interventional cardiologists and vascular biologists to study this complex process for the last two decades. In this book we explore the process of restenosis from bench to bedside. First, it will encompass the description of the intricate molecular and genetic basis of restenosis and will translate these findings to histomorphology, animal models, and the possible therapeutic repercussions in the diagnosis and management of the cardiovascular patient. Second, it will discuss the recent advances in invasive imaging of vascular lesions. Also, the non-invasive imaging of vascular lesions has emerged in recent years as a promising alternative to conventional angiography. This will be discussed by the very people who have pioneered this particular field of vascular imaging. Third, it will describe the exciting progress that we and others have recently achieved in the treatment of this clinical problem.

Essentials of Restenosis: For the Interventional Cardiologist will therefore provide a complete overview of the molecular basis and clinical approach to image, prevent, and treat this complex disease. The authors contributing to this work have pioneered the field of vascular imaging and intervention and represent the leaders in the field of interventional cardiology and vascular proliferative disease.

Essentials of Restenosis: For the Interventional Cardiologist is aimed at both clinicians performing vascular interventions, as well as molecular and vascular biologists. It will enable clinical cardiologists to deepen their insight in the molecular, genetic, and cellular basis of neointima formation or their application in the treatment of restenosis. It will also provide a clear perspective to the clinical application of molecular principles in vascular disease for fundamental vascular biologists.

We would like to thank the contributors for their time and efforts, for which we are greatly indebted. Without their enthusiasm and their excellent contributions, this high quality volume of the Contemporary Cardiology™ series could not have been produced.

Henricus J. Duckers, MD, PhD
Elizabeth G. Nabel, MD
Patrick W. Serruys, MD, PhD
CONTENTS

Preface ... v
Contributors .. ix
List of Color Plates .. xiii

PART I. PATHOPHYSIOLOGY AND DIAGNOSIS

1. Unraveling the Complex Process of Restenosis From Bench to Bedside 3
 Henricus J. Duckers, Caroline Cheng, Dennie Tempel, and Patrick W. Serruys

2. Epidemiology and Pathogenesis of Restenosis ... 7
 Randolph L. Geary and Alexander W. Clowes

3. Clinical Presentation of Restenosis ... 29
 Ganesh Manoharan, Giedrius Davidavicius, and William Wijns

4. Pathological Anatomy of Restenosis ... 47
 Renu Virmani, Frank D. Kolodgie, Alok V. Finn, and Herman K. Gold

5. The Influence of Shear Stress on Restenosis .. 59
 Attila Thury, Jolanda J. Wentzel, Frank J. H. Gijsen, Johan C. H. Schuurbiers, Rob Krams, Pim J. de Feyter, Patrick W. Serruys, and Cornelis J. Slager

6. The Immune System in the Pathogenesis of Vascular Proliferative Disease 85
 Jon D. Laman and Burkhard Ludewig

7. Animal Restenosis Models: From the Ideal Model to the Ideal Study 131
 Arturo G. Touchard and Robert S. Schwartz

PART II. GENETIC BASIS OF RESTENOSIS

8. The Genomics of Restenosis ... 153
 Thomas W. Johnson and Karl R. Karsch

 Dietlind Zohlnhöfer and Franz-Josef Neumann

10. Proteomics and Restenosis ... 175
 Santhi K. Ganesh and Elizabeth G. Nabel

11. Contribution of Circulating Progenitor Cells to Vascular Repair and Lesion Formation .. 185
 Masataka Sata and Kenneth Walsh

12. Cell Cycle Regulators and Vascular Proliferative Diseases 199
 Andrew Wragg and Manfred Boehm
13. Arterial Remodeling ... 213
 Gerard Pasterkamp, Bradley H. Strauss, and Dominique de Kleijn

14. The Role of eNOS in Vascular Diseases 227
 Alexey Kuroedov, Francesco Cosentino, Felix C. Tanner, and Thomas F. Lüscher

PART III. DIAGNOSIS OF RESTENOSIS

15. The Use of Pressure Gradient in the Diagnosis of Restenosis 247
 Volker Klaus and Nico H. J. Pijls

16. The Use of Radio Isotopes in the Diagnosis of Vascular
 Proliferative Disease .. 257
 Giedrius Davidavicius, Ganesh Manoharan, and William Wijns

17. Magnetic Resonance Imaging for Restenosis 277
 Robert Jan M. van Geuns and Timo Baks

18. Coronary Imaging With Multislice Spiral
 Computed Tomography ... 287
 Koen Nieman

PART IV. THERAPY OF RESTENOSIS

19. Pharmacotherapy of Restenosis ... 301
 Pim J. de Feyter and Georgios Sianos

20. Brachytherapy .. 307
 Ron Waksman

21. Preclinical Data of Eluting Stents ... 333
 Antonio Colombo and Alaide Chieffo

22. Clinical Data of Eluting Stents .. 353
 Marco A. Costa, Alexandre Abizaid, Amanda G. M. R. Sousa, and J. Eduardo Sousa

23. Biodegradable Stents .. 369
 Takafumi Tsuji, Hideo Tamai, and Keiji Igaki

PART V. BIOTECHNOLOGY IN THE TREATMENT OF RESTENOSIS

24. Vascular Gene Therapy ... 379
 Gurpreet S. Sandhu and Robert D. Simari

25. Antisense and ODN Transcription Factors in the Treatment
 of Vascular Proliferative Disease 395
 Nicholas Kipshidze, Mykola Tsapenko, George Dangas, and Pat Iversen

26. Cell Cycle Approaches to the Treatment of In-Stent Restenosis 407
 Elizabeth G. Nabel

27. Local Gene and Cell Delivery Devices 419
 Ravish Sachar and Eric J. Topol

Index ... 443
C

ONTRIBUTORS

ALEXANDRE ABIZAID, MD, PhD • Institute Dante Pazzanese of Cardiology, São Paulo, Brazil
TIMO BAKS, MD • Thoraxcenter Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands
MANFRED BOEHM, MD • The Cardiovascular Branch, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
AL AIDE CHIEFFO, MD • San Raffaele Hospital, Milan, Italy
CAROLINE CHENG, PhD • Thoraxcenter Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands
ALEXANDER W. CLOWES, MD • Section on Vascular Surgery, University of Washington School of Medicine, Seattle, WA
ANTONIO COLOMBO, MD • Columbus Hospital and San Raffaele Hospital, Milan, Italy
FRANCESCO COSENTINO, MD, PhD • Cardiovascular Research, Institute of Physiology, University of Zürich; and Cardiovascular Center, University Hospital, Zürich, Switzerland
MARCO A. COSTA, MD, PhD • University of Florida - Shands, Jacksonville, FL
GEORGE DANGAS, MD, PhD • Lenox Hill Heart and Vascular Institute of New York, Lenox Hill Hospital, Cardiovascular Research Foundation, New York, NY
GIEDRIUS DAVIDAVICIUS, MD • Cardiovascular Centre Aalst, OLV Hospital, Aalst, Belgium
HENRICUS J. DUCKERS, MD, PhD • Thoraxcenter Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands
PIM J. DE FEYTER, MD, PhD • Thoraxcenter, Cardiology Department, Erasmus Medical Center, Rotterdam, The Netherlands
ALOKE V. FINN, MD • Cardiac Unit, Department of Internal Medicine, Massachusetts General Hospital, Boston, MA
SANTHI K. GANESH, MD • Vascular Biology Section, Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
RANDOLPH L. GEARY, MD, FACS • Division of Surgical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
ROBERT JAN M. VAN GEUNS, MD, PhD • Thoraxcenter Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands
FRANK J. H. GIJSEN, PHD • Thoraxcenter, Cardiology Department, Erasmus Medical Center, Rotterdam, The Netherlands
HERMAN K. GOLD, MD • Cardiac Unit, Department of Internal Medicine, Massachusetts General Hospital, Boston, MA
KEIJI IGAKI, PHD • Igaki Medical Planning Co. Ltd., Kyoto, Japan
PAT IVERSEN, PHD • AVI Biopharma, Portland, OR
THOMAS W. JOHNSON, BSC, MBBS, MRCP • Bristol Heart Institute, University of Bristol, Bristol, UK
KARL R. KARSCH, MD • Bristol Heart Institute, University of Bristol, Bristol, UK
NICHOLAS KIPSIDZE, MD, PHD • Lenox Hill Heart and Vascular Institute of New York, Lenox Hill Hospital, Cardiovascular Research Foundation, New York, NY
VOLKER KLAUSS, MD • Department of Cardiology, Medizinische Poliklinik–Innenstadt, University of Munich, Munich, Germany
DOMINIQUE DE KLEIN, PhD • Laboratory of Experimental Cardiology, Heart Lung Institute, University Medical Center Utrecht, Utrecht, The Netherlands
FRANK D. KOLODGIE, PhD • Department of Cardiovascular Pathology, Armed Forces Institute of Pathology, Washington, DC
ROB KRAMS, MD, PhD • Thoraxcenter, Cardiology Department, Erasmus Medical Center, Rotterdam, The Netherlands
ALEXEY KUROEDOV, MD • Cardiovascular Research, Institute of Physiology, University of Zürich and Cardiovascular Center, University Hospital, Zürich, Switzerland
JON D. LAMAN, PhD • Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
BURKHARD LUDEWIG, PhD, DVM • Research Department, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
THOMAS F. LÜSCHER, MD • Cardiovascular Research, Institute of Physiology, University of Zürich and Cardiovascular Center, University Hospital, Zürich, Switzerland
GANESH MANOHARAN, MBBCh, MD, MRCPI • Cardiovascular Centre Aalst, OLV Hospital, Aalst, Belgium
ELIZABETH G. NABEL, MD • The Nabel Lab, Genome Technology Branch, NHGRI Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD
FRANZ-JOSEF NEUMANN, MD • Herz Zentrum Bad Krozingen, Bad Krozingen, Germany
KOEN NIEMAN, MD, PhD • Thoraxcenter, Department of Cardiology and Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
GERARD PASTERKAMP, PhD • Laboratory of Experimental Cardiology, Heart Lung Institute, University Medical Center Utrecht, Utrecht, The Netherlands
NICO H. J. PIJLS, MD, PhD • Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
RAVISH SACHAR, MD • Wake Heart and Vascular, Raleigh, NC
MASATAKA SATA, MD, PhD • Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
GURPREET S. SANDHU, MD, PhD • Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN
JOHAN C. H. SCHUURBIERS, BSc • Thoraxcenter, Cardiology Department, Erasmus Medical Center, Rotterdam, The Netherlands
ROBERT S. SCHWARTZ, MD • Minnesota Cardiovascular Research Institute, Minneapolis Heart Institute, Minneapolis, MN
PATRICK W. SERRUYS, MD, PhD • Thoraxcenter, Cardiology Department, Erasmus Medical Center, Rotterdam, The Netherlands
GEORGIOS SIANOS, MD, PhD • Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
ROBERT D. SIMARI, MD • Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN
CORNELIS J. SLAGER, PhD • Thoraxcenter, Cardiology Department, Erasmus Medical Center, Rotterdam, The Netherlands
AMANDA G. M. R. SOUSA, MD, PhD • Institute Dante Pazzanese of Cardiology, São Paulo, Brazil
Contributors

J. Eduardo Sousa, MD, PhD • Institute Dante Pazzanese of Cardiology, São Paulo, Brazil
Bradley H. Strauss, MD, PhD • Department of Cardiology, St. Michael’s Hospital, Toronto, Ontario, Canada
Hideo Tamai, MD • Department of Cardiology, Shiga Medical Center for Adults, Shiga, Japan
Felix C. Tanner, MD • Cardiovascular Research, Institute of Physiology, University of Zürich and Cardiovascular Center, University Hospital, Zürich, Switzerland
Dennie Tempel, BSc • Thoraxcenter, Cardiology Department, Erasmus Medical Center, Rotterdam, The Netherlands
Attila Thury, MD, PhD • Thoraxcenter, Cardiology Department, Erasmus Medical Center, Rotterdam, The Netherlands
Eric J. Topol, MD • Department of Molecular and Experimental Medicine, Scripps Translational Science Institute, Scripps Health, Division of Cardiovascular Diseases, Scripps Clinic, The Scripps Research Institute, La Jolla, CA
Arturo G. Touchard, MD • Minnesota Cardiovascular Research Institute, Minneapolis Heart Institute, Minneapolis, MN
Mykola Tsapenko, MD, PhD • Department of Medicine, Bronx VA Medical Center, New York, NY
Takafumi Tsuji, MD • Department of Cardiology, Shiga Medical Center for Adults, Shiga, Japan
Renu Virmani, MD • Department of Cardiovascular Pathology, Armed Forces Institute of Pathology, Washington, DC
Ron Waksman, MD • Division of Cardiology, Washington Hospital Center, Washington, DC
Kenneth Walsh, PhD • Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
Jolanda J. Wentzel, PhD • Thoraxcenter, Cardiology Department, Erasmus Medical Center, Rotterdam, The Netherlands
William Wijns, MD, PhD • Cardiovascular Centre Aalst, OLV Hospital, Aalst, Belgium
Andrew Wragg, MD • The Cardiovascular Branch, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
Dietlind Zohlnhöfer, MD • Deutsches Herzzentrum München, München, Germany
LIST OF COLOR PLATES

The color plates listed below appear following p. 226

Color Plate 1.
Fig. 1B, Chapter 2. Response to injury, normal artery wall.
(See complete caption on p. 11.)

Color Plate 2.
Fig. 2, Chapter 2. Response to injury, atherosclerotic artery wall.
(See complete caption on p. 12.)

Color Plate 3.
Fig. 1, Chapter 4. Arterial inflammation in coronary arteries with stents placed less than or equal to 3 d antemortem.
(See complete caption on p. 49.)

Color Plate 4.
Fig. 4, Chapter 4. In-stent restenosis.
(See complete caption on p. 52.)

Color Plate 5.
Fig. 5, Chapter 4. Neointimal macrophages and neointimal growth.
(See complete caption on p. 54.)

Color Plate 6.
Fig. 3, Chapter 5. (A) After lumen meshing, computational flow dynamics allows (B) detailed velocity determination at any cross-section. From this (C) the local velocity profile and wall WSS (colored band) are derived. Ultimately, (D) WSS is calculated at any location of the lumen wall as shown in color-code.
(See complete caption on p. 63.)

Color Plate 7.
Fig. 7, Chapter 5. (A) Lateral angiographic view of the left anterior descending coronary artery after stent placement. Open arrow indicates location of step-up.
(See complete caption on p. 73.)

Color Plate 8.
Fig. 8, Chapter 5. (A) Neointimal hyperplasia, which is color-coded at the 3-dimensionally reconstructed lumen at baseline.
(See complete caption on p. 74.)

Color Plate 9.
Fig. 1, Chapter 7. Rat carotid artery.
(See complete caption on p. 133.)

Color Plate 10.
Fig. 2, Chapter 7. Dog coronary artery after severe mechanical injury.
(See complete caption on p. 134.)

Color Plate 11.
Fig. 3, Chapter 7. Pig coronary artery.
(See complete caption on p. 135.)

Color Plate 12.
Fig. 4, Chapter 7. Injury score in the porcine coronary artery.
(See complete caption on p. 137.)

Color Plate 13.
Fig. 5, Chapter 7. Example of chronic vascular inflammation.
(See complete caption on p. 139.)

Color Plate 14.
Fig. 6, Chapter 7. Differences between elastic arteries and muscular arteries.
(See complete caption on p. 140.)

Color Plate 15.
Fig. 7, Chapter 7. Importance of the injury score.
(See complete caption on p. 143.)

Color Plate 16.
Fig. 5, Chapter 8. A schematic representation of the SAGE protocol.
(See complete caption on p. 161.)
Color Plate 17. Fig. 1, Chapter 11. Neointima formation in the absence of medial cells. (See complete caption on p. 186.)

Color Plate 18. Fig. 2, Chapter 11. Recipient cells contribute to graft-vasculopathy. (See complete caption on p. 188.)

Color Plate 19. Fig. 3, Chapter 11. Contribution of bone marrow cells to healing and lesion formation after mechanical injury. (See complete caption on p. 189.)

Color Plate 20. Fig. 4, Chapter 11. Bone marrow-derived SMC in atherosclerotic plaques. BMT was performed from GFP-mice to ApoE-deficient mice, and animals were maintained on a Western diet. (See complete caption on p. 190.)

Color Plate 21. Fig. 5, Chapter 11. Marked diversity in the contribution of bone marrow-derived cells to vascular remodeling. (See complete caption on p. 191.)

Color Plate 22. Fig. 1, Chapter 15. Fractional flow reserve can be derived easily by means of a 0.014-in. pressure guide wire, which is placed distally to a stenosis of questionable hemodynamic relevance. (See complete caption on p. 249.)

Color Plate 23. Fig. 3, Chapter 15. A 50-yr-old man was scheduled for control angiography. (See complete caption on p. 253.)

Color Plate 24. Fig. 4, Chapter 15. Angiogram of a venous graft to a small obtuse marginal branch, which was treated with stent implantation (bare metal stent) 8 mo ago. (See complete caption on p. 254.)

Color Plate 25. Fig. 5, Chapter 15. A 58-yr-old male was scheduled for PCI of the LAD. (See complete caption on p. 255.)

Color Plate 26. Fig. 2, Chapter 22. Widely patent sirolimus-eluting stent in the right coronary artery (left upper panel). (See complete caption on p. 358.)

Color Plate 27. Fig. 3, Chapter 24. Ultrasound-induced disruption of DNA3.1-LacZ-coated microbubbles improves gene delivery. (See complete caption on p. 384.)

Color Plate 28. Fig. 3, Chapter 24. High-resolution MR images of the gadolinium/GFP lentivirus delivery in the iliac artery of a pig. (See complete caption on p. 386.)

Color Plate 29. Fig. 4, Chapter 24. lacZ-transgene expression in uninjured and balloon-injured rat carotid arteries infected with AdSM22-lacZ and AdCMV-lacZ. (See complete caption on p. 388.)

Color Plate 30. Fig. 6, Chapter 24. AAV expressing targeting peptide (MTP) decreases liver uptake and increases systemic vascular targeting in vivo. (See complete caption on p. 391.)

Color Plate 31. Fig. 1, Chapter 26. Cell cycle pathways. (See complete caption on p. 408.)

Color Plate 32. Fig. 3, Chapter 26. Structure of sirolimus (left) and paclitaxel, along with their effects on the biology of the vasculature. (See complete caption on p. 413.)
Color Plate 1. Response to injury, normal artery wall. (Fig. 1B, Chapter 2; see complete caption on p. 11.)

Color Plate 2. Response to injury, atherosclerotic artery wall. (Fig. 2, Chapter 2; see complete caption on p. 12.)