Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:

– Methods critically evaluated by leading scientists
– Background information and detailed experimental procedures
– Schemes and tables which illustrate the reaction scope
<table>
<thead>
<tr>
<th>Role</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing Director</td>
<td>G. F. Herrmann</td>
</tr>
<tr>
<td>Managing Editor</td>
<td>M. F. Shortt de Hernandez</td>
</tr>
<tr>
<td>Assistant Scientific Editors</td>
<td>C. Baillie, M. J. White</td>
</tr>
</tbody>
</table>

Georg Thieme Verlag
Stuttgart · New York
Category 3

Compounds with Four and Three Carbon–Heteroatom Bonds

Three Carbon–Heteroatom Bonds: Amides and Derivatives; Peptides; Lactams

Volume Editor
S. M. Weinreb

Responsible Member of the Editorial Board
I. Shinkai

Authors
J. Antoline, J. Kabir, S. Pritz
J. Aubé, C. E. Katz, L. Shen
D. J. Austin, R. Kaul, M. P. Sibi
T. R. Bailey, K. C. M. Kurtz, S. R. Sieck
P. R. Blakemore, W.-R. Li, B. W. Slaper
J. W. Blankenship, J. Liebscher, M. B. Smith
V. Cesare, M. F. Lipton, D. Stien
J. K. Cha, W. D. Lubell, M. R. Tracey
C. Coates, F. A. Luzzio, E. Turos
G. R. Cook, Y. R. Mahajan, S. M. Weinreb
G. Fridkin, S. Manyem, A. Whitehead
P. R. Hanson, M. A. Mauragis, Y. Zhang
R. Hoffman, S. M. Miller, T. Ziegler
R. P. Hsung, S. Mukherjee
W. R. Judd, M. Pätzelt
Date of publication: August 10, 2005

Copyright and all related rights reserved, especially the right of copying and distribution, multiplication and reproduction, as well as of translation. No part of this publication may be reproduced by any process, whether by photostat or microfilm or any other procedure, without previous written consent by the publisher. This also includes the use of electronic media of data processing or reproduction of any kind.

This reference work mentions numerous commercial and proprietary trade names, registered trademarks and the like (not necessarily marked as such), patents, production and manufacturing procedures, registered designs, and designations. The editors and publishers wish to point out very clearly that the present legal situation in respect of these names or designations or trademarks must be carefully examined before making any commercial use of the same. Industrially produced apparatus and equipment are included to a necessarily restricted extent only and any exclusion of products not mentioned in this reference work does not imply that any such selection of exclusion has been based on quality criteria or quality considerations.

Warning! Read carefully the following: Although this reference work has been written by experts, the user must be advised that the handling of chemicals, microorganisms, and chemical apparatus carries potentially life-threatening risks. For example, serious dangers could occur through quantities being incorrectly given. The authors took the utmost care that the quantities and experimental details described herein reflected the current state of the art of science when the work was published. However, the authors, editors, and publishers take no responsibility as to the correctness of the content. Further, scientific knowledge is constantly changing. As new information becomes available, the user must consult it. Although the authors, publishers, and editors took great care in publishing this work, it is possible that typographical errors exist, including errors in the formulas given herein. Therefore, it is imperative that and the responsibility of every user to carefully check whether quantities, experimental details, or other information given herein are correct based on the user’s own understanding as a scientist.Scale-up of experimental procedures published in Science of Synthesis carries additional risks. In cases of doubt, the user is strongly advised to seek the opinion of an expert in the field, the publishers, the editors, or the authors. When using the information described herein, the user is ultimately responsible for his or her own actions, as well as the actions of subordinates and assistants, and the consequences arising there from.
Preface

As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work *Houben–Weyl Methods of Organic Chemistry* will be published starting in the year 2000.

To reflect the new broader need and focus, this new edition has a new title, *Science of Synthesis, Houben–Weyl Methods of Molecular Transformations*. *Science of Synthesis* will benefit from more than 90 years of experience and will continue the tradition of excellence in publishing synthetic chemistry reference works. *Science of Synthesis* will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of *Science of Synthesis* will provide chemists with the most reliable methods to solve their synthesis problems. *Science of Synthesis* will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make *Science of Synthesis* the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

The Editorial Board

D. Bellus (Basel, Switzerland)
E. N. Jacobsen (Cambridge, USA)
S. V. Ley (Cambridge, UK)
R. Noyori (Nagoya, Japan)
M. Regitz (Kaiserslautern, Germany)
P. J. Reider (New Jersey, USA)
E. Schaumann (Clausthal-Zellerfeld, Germany)
I. Shinkai (Tsukuba, Japan)
E. J. Thomas (Manchester, UK)
B. M. Trost (Stanford, USA)

October 2000
Volume Editor’s Preface

This volume is one of seven of *Science of Synthesis* dealing with compounds with four and three carbon—heteroatom bonds (Category 3). The volume falls in the latter subcategory, and covers the synthesis of compounds possessing an amide bond, incorporating lactams and peptides. A chapter on acyl phosphorus compounds has also been included. However, it should be noted that amide polymers have not been included, even though they constitute an important class of amido compounds. This omission is primarily due to the fact that these macromolecules are not traditional targets for chemists working in the area of organic synthesis, and a treatment of polymers would not be of value to the vast majority of readers of *Science of Synthesis*.

The volume follows the same organization as the other Category 3 volumes of *Science of Synthesis*. The material has been organized into methods of synthesis of the particular product class, usually with a brief discussion of the scope of the method, followed by specific examples and representative experimental procedures. In general, the product classes are ordered using the usual *Science of Synthesis* pattern.

I would like to thank the many diligent authors who sifted through large amounts of material and selected important information for inclusion in their chapters. Syntheses of amido compounds of various types have previously been reviewed in considerable depth in several volumes of *Houben–Weyl*. For example, Volume E 5 (Parts 1 and 2) which were published in 1985 covered the synthesis of amides. In addition, Volume XIV (Parts 1 and 2) published in 1974 and Volume E22 (in four parts) which appeared in 2001–2 discussed the synthesis of peptides and peptidomimetics, along with protecting group strategies. However, the *Science of Synthesis* organization and degree of coverage is quite different from *Houben–Weyl*, and the new format required the authors to do considerably more than simply paraphrase and/or revise these older reviews. I am indebted to Dr. Joe Richmond for his help and guidance in planning and organizing this volume. I also thank the members of my research group at Penn State University who proofread various chapters prior to publication. Finally, it was a pleasure to once again work with Dr. M. Fiona Shortt de Hernandez and her group of capable editors at Thieme.

Volume Editor

Steven M. Weinreb

University Park, June 2005
Volume 22:
Three Carbon–Heteroatom Bonds:
Amides and Derivatives; Peptides; Lactams

Preface .. V

Table of Contents .. IX

21
Introduction
Y. R. Mahajan and S. M. Weinreb ... 1

21.1 Product Class 1: Amides
Y. R. Mahajan and S. M. Weinreb ... 17

21.1.1 Synthesis from Carbonic Acid Derivatives
D. Stien .. 27

21.1.2 Synthesis from Carboxylic Acids and Derivatives
T. Ziegler ... 43

21.1.3 Synthesis from Aldehydes, Ketones, and Related Compounds
D. J. Austin and S. M. Miller .. 77

21.1.4 Synthesis from Amines
G. R. Cook ... 111

21.1.5 Synthesis by Rearrangement
W. R. Judd, C. E. Katz, and J. Aubé .. 133

21.1.6 Synthesis with Retention of the Functional Group
W.-R. Li .. 179

21.2 Product Class 2: Triacylamines, Imides (Diacylamines),
and Related Compounds
F. A. Luzzio ... 259

21.3 Product Class 3: N-[α-(Heteroatom)alkyl]-Substituted Alkanamides
J. K. Cha .. 325

21.4 Product Class 4: N-Arylalkanamides, Ynamides, Enamides,
Dienamides, and Allenamides
M. R. Tracey, R. P. Hsung, J. Antoline, K. C. M. Kurtz, L. Shen, B. W. Slafer,
and Y. Zhang ... 387

21.5 Product Class 5: α-Heteroatom-Substituted Alkanamides
M. Pätzeli, S. Pritz, and J. Liebscher 477

21.6 Product Class 6: α,β- Unsaturated Amides: Alk-2-ynamides,
Arenecarboxamides, and Alk-2-enamides
M. F. Lipton and M. A. Mauragis ... 537

21.7 Product Class 7: β-Heteroatom-Substituted Alkanamides
S. Manyem and M. P. Sibi .. 565
21.8 Product Class 8: \(\alpha \)-Lactams
R. V. Hoffman and V. Cesare .. 591

21.9 Product Class 9: \(\beta \)-Lactams
C. Coates, J. Kabir, and E. Turos ... 609

21.10 Product Class 10: \(\gamma \)-Lactams and Larger Ring Lactams
M. B. Smith ... 647

21.11 Product Class 11: Peptides
W. D. Lubell, J. W. Blankenship, G. Fridkin, and R. Kaul 713

21.12 Product Class 12: Metal Amides and Imides
T. R. Bailey .. 811

21.13 Product Class 13: N-Heteroatom-Substituted Alkanamides
P. R. Blakemore .. 833

21.14 Product Class 14: Acylphosphorus Compounds
A. Whitehead, S. R. Sieck, S. Mukherjee, and P. R. Hanson 907

Keyword Index ... 941

Author Index ... 979

Abbreviations .. 1031
Table of Contents

21
Introduction
Y. R. Mahajan and S. M. Weinreb

21
Product Class 1: Amides
Y. R. Mahajan and S. M. Weinreb

21.1
Synthesis from Carbonic Acid Derivatives
D. Stien

21.1.1
Synthesis from Carbonic Acid Derivatives

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1.1.1</td>
<td>Method 1: Synthesis from Carbon Dioxide and Compounds Related to Carbonic Acid</td>
<td>27</td>
</tr>
<tr>
<td>21.1.1.2</td>
<td>Variation 1: From Carbon Dioxide</td>
<td>27</td>
</tr>
<tr>
<td>21.1.1.3</td>
<td>Variation 2: From Carbon Tetrachloride</td>
<td>28</td>
</tr>
<tr>
<td>21.1.1.4</td>
<td>Variation 3: From Phosgene, Phosgene Surrogates, and Chloroformates</td>
<td>28</td>
</tr>
<tr>
<td>21.1.1.5</td>
<td>Variation 4: From Carbonates</td>
<td>29</td>
</tr>
<tr>
<td>21.1.1.6</td>
<td>Method 2: Synthesis from Carbamic Acids and Related Derivatives</td>
<td>30</td>
</tr>
<tr>
<td>21.1.1.7</td>
<td>Variation 1: From O-Alkyl or O-Aryl Carbamates</td>
<td>30</td>
</tr>
<tr>
<td>21.1.1.8</td>
<td>Variation 2: From Carbamoyl Halides and Related Derivatives</td>
<td>31</td>
</tr>
<tr>
<td>21.1.1.9</td>
<td>Variation 3: From Cyanic Acid and Cyanic Acid Salts</td>
<td>32</td>
</tr>
<tr>
<td>21.1.1.10</td>
<td>Variation 4: From Isocyanates</td>
<td>32</td>
</tr>
<tr>
<td>21.1.1.11</td>
<td>Method 3: Synthesis from Ureas and Related Derivatives</td>
<td>33</td>
</tr>
<tr>
<td>21.1.1.12</td>
<td>Variation 1: From Diverse N-Substituted Ureas</td>
<td>33</td>
</tr>
<tr>
<td>21.1.1.13</td>
<td>Variation 2: From Diimides and Cyanamides</td>
<td>35</td>
</tr>
<tr>
<td>21.1.1.14</td>
<td>Variation 3: From O-Alkylated Ureas</td>
<td>35</td>
</tr>
<tr>
<td>21.1.1.15</td>
<td>Method 4: Synthesis from Sulfur-Containing Compounds</td>
<td>37</td>
</tr>
<tr>
<td>21.1.1.16</td>
<td>Variation 1: Reduction of the C—S Bond</td>
<td>37</td>
</tr>
<tr>
<td>21.1.1.17</td>
<td>Variation 2: C—C Bond Formation</td>
<td>38</td>
</tr>
</tbody>
</table>

21.1.2
Synthesis from Carboxylic Acids and Derivatives
T. Ziegler

21.1.2.1
Synthesis from Carboxylic Acids and Derivatives

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1.2.1.1</td>
<td>Method 1: Aminolysis of Acylboranes</td>
<td>43</td>
</tr>
<tr>
<td>21.1.2.1.2</td>
<td>Method 2: Synthesis from Acid Halides</td>
<td>43</td>
</tr>
<tr>
<td>21.1.2.1.3</td>
<td>Variation 1: By Condensation with Amines and Alkyl(trialkylsilyl)amines</td>
<td>43</td>
</tr>
<tr>
<td>21.1.2.1.4</td>
<td>Variation 2: By Indium Catalysis</td>
<td>44</td>
</tr>
<tr>
<td>21.1.2.1.5</td>
<td>Method 3: Synthesis from Carboxylic Acids</td>
<td>44</td>
</tr>
<tr>
<td>21.1.2.1.6</td>
<td>Variation 1: By Direct Condensation with Amines</td>
<td>44</td>
</tr>
<tr>
<td>21.1.2.1.7</td>
<td>Variation 2: By Condensation with Borane or Borohydrides</td>
<td>45</td>
</tr>
</tbody>
</table>
21.1.2.3.3 Variation 3: By Condensation with Carboximidates 46
21.1.2.3.4 Variation 4: By Other Dehydrating Agents 46
21.1.2.3.5 Variation 5: By Redox Condensation 46
21.1.2.4 Method 4: Synthesis from Acid Anhydrides 47
21.1.2.4.1 Variation 1: By Condensation with Isocyanates 47
21.1.2.4.2 Variation 2: By Condensation with Amines 48
21.1.2.5 Method 5: Synthesis from Esters ... 49
21.1.2.5.1 Variation 1: By Aminolysis with Amines or Metal Amides 49
21.1.2.5.2 Variation 2: Via Intermediate Acyl Cyanides 50
21.1.2.5.3 Variation 3: By Electrolysis ... 51
21.1.2.5.4 Variation 4: By Enzyme Catalysis .. 51
21.1.2.6 Method 6: Synthesis from Thiocarboxylic Acids or Carbothioate Esters ... 51
21.1.2.6.1 Variation 1: From Thiocarboxylic Acids 52
21.1.2.6.2 Variation 2: From Carbothioate Esters and Amines 55
21.1.2.6.3 Variation 3: From S-Benzothiazol-2-yl Carbothioates 56
21.1.2.6.4 Variation 4: From Carbothioate Esters by Reaction with Alkyl Azides 56
21.1.2.7 Method 7: Synthesis from Acyl Azides 57
21.1.2.7.1 Variation 1: By Reduction .. 57
21.1.2.7.2 Variation 2: By Substitution with Amines 58
21.1.2.8 Method 8: Synthesis from Imidates and Related Compounds 58
21.1.2.8.1 Variation 1: By Rearrangement .. 58
21.1.2.8.2 Variation 2: From 4,5-Dihydrooxazoles by Ring Opening 58
21.1.2.9 Method 9: Synthesis from Nitriles by Functional Group Transformation 58
21.1.2.9.1 Variation 1: By Hydrolysis .. 58
21.1.2.9.2 Variation 2: N-Alkylation by Ritter-Type Reactions 61
21.1.2.10 Method 10: Synthesis from Isocyanides 66
21.1.2.10.1 Variation 1: By Passerini-Type Reactions 66
21.1.2.10.2 Variation 2: By Ugi Reactions ... 68
21.1.2.11 Method 11: Synthesis from 1,1,1-Trihaloalkanes 69
21.1.2.12 Method 12: Synthesis from Ketenes, Ketene Acetals, or Ynamines 70

21.1.3 Synthesis from Aldehydes, Ketones, and Related Compounds
D. J. Austin and S. M. Miller

21.1.3 Synthesis from Aldehydes, Ketones, and Related Compounds 77
21.1.3.1 Method 1: Oxidation of Aldehydes ... 77
21.1.3.1.1 Variation 1: Radical-Promoted Oxidation 78
21.1.3.1.2 Variation 2: Palladium-Catalyzed Oxidation 79
21.1.3.1.3 Variation 3: Manganese(IV) Oxide Promoted Oxidation 80
21.1.3.1.4 Variation 4: Nickel Peroxide Mediated Oxidation 80
21.1.3.1.5 Variation 5: Photochemical Oxidation of Aryl Aldehydes 81
21.1.3.1.6 Variation 6: Electrochemical Oxidation 82
21.1.3.2 Method 2: Oxidative Decyanation of ω-Aminonitrile Derivatives of Aldehydes ... 83
21.1.3.3 Method 3: Amination and Hydrolysis of O-Trimethylsilyl Cyanohydrins 84
21.1.3.3.1 Variation 1: Direct Hydrolysis of O-Trimethylsilyl Cyanohydrins 84
21.1.3.4 Method 4: Electrochemical Oxidation of Aryl and Aliphatic Ketones 85
21.1.3.5 Method 5: Fragmentation of Non-Enolizable Ketones (Haller–Bauer Reaction) 87

21.1.3.6 Method 6: Hydrolysis of Iminium Salts Formed from Ketones and Dichloromethylene(dimethylammonium) Chloride 88

21.1.3.7 Method 7: Reductive Amidation of Ketones (Leuckart Reaction) 89

21.1.3.8 Method 8: Condensation of Carbonyl Compounds with Ynamines 91

21.1.3.9 Method 9: Reaction of Ketones with Chloroform and Amines under Phase-Transfer Conditions .. 92

21.1.3.10 Method 10: Oxidation of Imines ... 93

21.1.3.10.1 Variation 1: With 3-Chloroperoxybenzoic Acid 93

21.1.3.10.2 Variation 2: With Sodium Perborate ... 94

21.1.3.10.3 Variation 3: With Potassium Permanganate 95

21.1.3.10.4 Variation 4: Oxidation of Quinone Imines 96

21.1.3.10.5 Variation 5: With Chromyl Chloride ... 97

21.1.3.10.6 Variation 6: With Phosphorus Pentachloride 97

21.1.3.11 Method 11: Oxidation of Cyclic Iminium Salts 99

21.1.3.12 Method 12: Transition-Metal-Catalyzed Carbonylation of Imines 99

21.1.3.12.1 Variation 1: With Octacarbonyldicobalt(0), Thiols, Imines, and Carbon Monoxide ... 100

21.1.3.12.2 Variation 2: With Octacarbonyldicobalt(0), Alkyl Boranes, and Carbon Monoxide ... 102

21.1.3.13 Method 13: Base-Induced Cycloreversion of Nitrile Oxide Cycloadducts 103

21.1.3.14 Method 14: Reaction of Acetals with Isocyanides 104

21.1.3.15 Method 15: Acylation of Enamines ... 105

21.1.3.16 Method 16: Palladium-Catalyzed Arylation with α-Aminoalkenenitriles 105

21.1.3.17 Method 17: Reaction of α-Aminoalkenenitriles 107

21.1.4 Synthesis from Amines

G. R. Cook

21.1.4 Synthesis from Amines ... 111

21.1.4.1 By Oxidation ... 111

21.1.4.1.1 Method 1: Oxidation of Benzylamines with Potassium Permanganate 111

21.1.4.1.2 Method 2: Oxidation of 2-Aminonitriles 112

21.1.4.1.3 Method 3: Oxidation of Aldimines .. 112

21.1.4.1.3.1 Variation 1: With Sodium Perborate 113

21.1.4.1.3.2 Variation 2: With 3-Chloroperoxybenzoic Acid 113

21.1.4.2 By Carbonylation .. 114

21.1.4.2.1 Method 1: Palladium-Catalyzed Aminocarbonylation of Aryl and Vinyl Halides and Trifluoromethanesulfonates, and Related Compounds ... 114

21.1.4.2.1.1 Variation 1: Aminocarbonylation of Vinyl Halides and Trifluoromethanesulfonates ... 114

21.1.4.2.1.2 Variation 2: Palladium-Catalyzed Insertion into Aryl Halides and Trifluoromethanesulfonates ... 116

21.1.4.2.1.3 Variation 3: Palladium-Catalyzed Insertion into Hypervalent Iodine Compounds and Diazonium Salts ... 122
21.1.4.2.1.4 Variation 4: Palladium-Catalyzed Aminocarbonylation with In Situ Generated Carbon Monoxide .. 123
21.1.4.2.1.5 Variation 5: Ammonia Equivalents for the Palladium-Catalyzed Preparation of N-Unsubstituted Amides 125
21.1.4.2.2 Method 2: Palladium-Catalyzed Aminocarbonylation via Insertion into C—H Bonds .. 126
21.1.4.2.2.1 Variation 1: Insertion into Aryl C—H Bonds 126
21.1.4.2.2.2 Variation 2: Insertion into Acetylenic C—H Bonds 127
21.1.4.2.3 Method 3: Aminocarbonylation Involving Migratory Insertion into Alkene and Alkyne π-Bonds 128
21.1.4.2.3.1 Variation 1: Cobalt-Catalyzed Hydroformylation and Amination 128
21.1.4.2.3.2 Variation 2: Palladium-Catalyzed Aminocarbonylation of Alkynes ... 129
21.1.4.2.3.3 Variation 3: Palladium-Catalyzed Selenation and Carbonylation of Alkynes ... 129
21.1.4.2.4 Method 4: Photochemical Aminocarbonylation of Alkyl Iodides 130
21.1.4.2.5 Method 5: Ring Expansion of Aziridines 130

21.1.5 Synthesis by Rearrangement
W. R. Judd, C. E. Katz, and J. Aubé

21.1.5.1 Method 1: Favorskii Rearrangement from α-Halo Ketones 133
21.1.5.1.1 Variation 1: From Mono-α-halo Ketones 135
21.1.5.1.2 Variation 2: From α-Substituted α-Halo Ketones 136
21.1.5.1.3 Variation 3: Reactions with α,α′-Dihalo Ketones 138
21.1.5.2 Method 2: Arndt–Eistert Synthesis from Diazo Ketones 139
21.1.5.2.1 Variation 1: Intermolecular Reactions with Amines 142
21.1.5.2.2 Variation 2: Synthesis of β-Amino Acids and β-Peptides 144
21.1.5.2.3 Variation 3: Intramolecular Reactions 145
21.1.5.2.4 Variation 4: Ring Contraction 145
21.1.5.3 Method 3: Schmidt Reaction from Ketones with Hydrazoic Acid 146
21.1.5.3.1 Variation 1: From Ketones with Alkyl Azides 150
21.1.5.3.2 Variation 2: By Intramolecular Reactions of Alkyl Azides with Ketones ... 152
21.1.5.3.3 Variation 3: From Hydroxyalkyl Azides 154
21.1.5.4 Method 4: Beckmann Rearrangement from Oximes 156
21.1.5.4.1 Variation 1: The Photochemical Beckmann Rearrangement 161
21.1.5.5 Method 5: Chapman Rearrangement from Aryl Imidates 162
21.1.5.6 Method 6: Aza-Claisen Rearrangement from Allyl Imidates 164
21.1.5.7 Method 7: Rearrangement of Oxaziridines 168
21.1.5.8 Method 8: Willgerodt Reaction from Aryl Ketones 173
21.1.5.8.1 Variation 1: The Kindler Modification 175
21.1.6 Synthesis with Retention of the Functional Group
W.-R. Li

21.1.6 Synthesis with Retention of the Functional Group 179
21.1.6.1 Synthesis from Acyl Nitroso Compounds, Acyl Azides, N-Hydroxy Amides, N-Nitroso Amides, N-Nitro Amides, Acyl Hydrazines, Acyl Nitrenes, and Related Compounds ... 179
21.1.6.1.1 Method 1: Synthesis from Acyl Nitroso Compounds 179
21.1.6.1.2 Method 2: Reduction of Acyl Azides 180
21.1.6.1.2.1 Variation 1: With Hydride Reducing Agents 180
21.1.6.1.2.2 Variation 2: Conversion into Acetylated Amides with Acetic Anhydride and Chlorotrimethylsilane ... 181
21.1.6.1.3 Method 3: Synthesis from N-Hydroxy Amides and Their Derivatives 182
21.1.6.1.3.1 Variation 1: By Reductive Cleavage of N-Alkoxy Amides 182
21.1.6.1.3.2 Variation 2: By Reductive Cleavage of N-Benzyl oxy β-Lactams 184
21.1.6.1.3.3 Variation 3: By Amidyl Radical–Alkene Cyclizations 185
21.1.6.1.3.4 Variation 4: By Diastereoselective Addition of Nucleophiles to the C3 Position of N-Tosyloxy β-Lactams .. 186
21.1.6.1.3.5 Variation 5: By Base-Promoted Reaction of O-Sulfon ylated N-Hydroxy Amides with Nucleophiles ... 187
21.1.6.1.4 Method 4: Synthesis from N-Nitroso Amides or N-Nitro Amides 189
21.1.6.1.5 Method 5: Synthesis from Acyl Hydrazines 190
21.1.6.1.5.1 Variation 1: By Reductive Cleavage 190
21.1.6.1.5.2 Variation 2: By Oxidative Amidation 191
21.1.6.1.6 Method 6: Synthesis from Acyl Nitrenes 192
21.1.6.2 Synthesis from Formamides by Substitution of Hydrogen 193
21.1.6.2.1 Method 1: Palladium-Catalyzed Aminocarbonylation 193
21.1.6.2.2 Method 2: Carboxamidation of Organolithium and Organomagnesium Reagents .. 195
21.1.6.3 Synthesis from Imides (Diacylamines) and Triacylamines by Deacylation 196
21.1.6.3.1 Method 1: Samarium(II) Iodide Mediated Coupling Reaction 196
21.1.6.3.2 Method 2: Aluminum Trichloride Promoted Aminolysis of Cyclic Imides 197
21.1.6.3.3 Method 3: Hydride Reduction .. 198
21.1.6.3.4 Method 4: Photoinduced Single-Electron-Transfer (SET) Reaction 199
21.1.6.4 Synthesis from Enamides ... 199
21.1.6.4.1 Method 1: Asymmetric Hydrogenation 199
21.1.6.4.2 Method 2: Enantioselective Hydrogen Atom Transfer Reactions 200
21.1.6.4.3 Method 3: Chemoselective Conjugate Addition of Nucleophiles 207
21.1.6.4.4 Method 4: Cycloaddition Reactions 208
21.1.6.5 Synthesis from Other Amides by Transamidation 209
21.1.6.5.1 Method 1: Catalytic Transamidation 209
21.1.6.5.2 Method 2: Transamidation of Activated Amides 211
21.1.6.6 Synthesis from Other Amides by Acyl Exchange on Nitrogen 211
21.1.6.6.1 Method 1: Conversion of Carbamates 211
21.1.6.7 Synthesis from Other Amides by Modification of a Substituent on Nitrogen

21.1.6.7.1 Method 1: Amidoalkylation

21.1.6.7.1.1 Variation 1: Under Lewis Acid Catalysis

21.1.6.7.1.2 Variation 2: By Nucleophilic Attack

21.1.6.7.2 Method 2: Catalytic Asymmetric Allylation

21.1.6.7.3 Method 3: Radical Cyclization or Addition

21.1.6.7.4 Method 4: Oxidation

21.1.6.8 Synthesis from Other Amides by N-Alkylation

21.1.6.8.1 Method 1: Palladium-Catalyzed Alkylation

21.1.6.8.2 Method 2: Rhodium Carbenoid Reactions

21.1.6.8.3 Method 3: Ruthenium-Catalyzed Propargylic Substitution Reactions

21.1.6.8.4 Method 4: Copper(I)-Catalyzed Amidation

21.1.6.8.5 Method 5: Osmium-Catalyzed Asymmetric Aminohydroxylation of Alkenes

21.1.6.8.6 Method 6: Multicomponent Coupling of Aldehydes, Amides, and Dienophiles

21.1.6.9 Synthesis from Other Amides by N-Dealkylation

21.1.6.9.1 Method 1: Reduction by Lithium of Low-Molecular-Weight Amines and Ethane-1,2-diamine

21.1.6.9.2 Method 2: Ruthenium(VIII) Oxidation of Serine/Threonine Peptides

21.1.6.9.3 Method 3: Aza-Claisen Rearrangement

21.1.6.10 Synthesis from Lactams with Ring Opening

21.1.6.10.1 Method 1: Cleavage of the β-Lactam Ring

21.1.6.11 Synthesis from 2-Hydroxyamino Amides, α-Oxo Amides, α-Sulfanyl Amides, and Other Functionalized Amides

21.1.6.11.1 Method 1: Reduction of 2-Hydroxyamino Amides

21.1.6.11.2 Method 2: Reduction of α-Oxo Amides

21.1.6.11.3 Method 3: Desulfurization of α-Sulfanyl Amides

21.1.6.11.4 Method 4: Reduction of α-Functionalized Amides

21.1.6.11.5 Method 5: Free-Radical C-Allylation Reactions

21.1.6.11.6 Method 6: Sequential Elimination–Cyclopropanation Reactions

21.1.6.12 Synthesis from α-Amido Nitriles by Decyanation

21.1.6.12.1 Method 1: Catalytic Reduction of Nitriles

21.1.6.13 Synthesis from Alkynamides and Alkenamides by Reduction

21.1.6.13.1 Method 1: Enantioselective Conjugate Reduction with Semicorrin Cobalt Catalysts

21.1.6.13.2 Method 2: Regioselective Reduction with the Sodium Borohydride/Iodine System

21.1.6.14 Synthesis from Alkynamides and Alkenamides by Addition of Carbon Moieties to Carbon—Carbon Multiple Bonds, Other than 1,4-Addition of Heteroatoms

21.1.6.14.2 Method 2: Lewis Acid Promoted Cyclization