Neuroprotective Natural Products
Clinical Aspects and Mode of Action
Neuroprotective Natural Products
Neuroprotective Natural Products

Clinical Aspects and Mode of Action

Edited by Goutam Brahmachari
Contents

List of Contributors xv
Dedication xix
Preface xxi
Editor Biography xxv

1 Neuroprotective Natural Products: Clinical Aspects and Modes of Action – An Overview 1
Goutam Brahmachari

1.1 Introduction 1
1.2 An Overview of the Book 1
1.2.1 Chapter 2 1
1.2.2 Chapter 3 2
1.2.3 Chapter 4 2
1.2.4 Chapter 5 3
1.2.5 Chapter 6 3
1.2.6 Chapter 7 3
1.2.7 Chapter 8 4
1.2.8 Chapter 9 4
1.2.9 Chapter 10 4
1.2.10 Chapter 11 5
1.2.11 Chapter 12 5
1.2.12 Chapter 13 5
1.3 Concluding Remarks 6

2 Neuroprotective Agents: An Overview on the General Modes of Action 7
Christina Volsko and Ranjan Dutta

2.1 Introduction 7
2.2 Neuroprotective Agents 7
2.2.1 Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) 7
2.2.2 Hepatocyte Growth Factor (HGF) 8
2.2.3 Trophic Factors 9
2.2.4 Apolipoprotein E (apoE)–Containing Lipoproteins 9
2.2.5 Prothymosin α (PTMA) 10
2.2.6 Erythropoietin (EPO) 11
4.2.4 Resveratrol 66
4.2.4.1 Animal Studies with Resveratrol 67
4.2.5 Coenzyme Q10 68
4.2.5.1 Animal Studies with Coenzyme Q10 69
4.2.5.2 Human Studies with Coenzyme Q10 69
4.2.6 Vitamin C 70
4.2.6.1 In Vitro Studies with Vitamin C 71
4.2.6.2 Animal Studies with Vitamin C 71
4.2.6.3 Human Studies with Vitamin C 71
4.2.7 Melatonin 72
4.2.7.1 Animal Studies with Melatonin 73
4.3 Concluding Remarks 74
Abbreviations 75
References 75

5 Neuroprotective Effect of Ayurvedic Preparations and Natural Products on Parkinson’s Disease 91
Anupom Borah, Amarendranath Choudhury, Rajib Paul, Muhammed K. Mazumder, and Swapnali Chetia
5.1 Introduction 91
5.1.1 Therapy for Parkinson’s Disease 91
5.2 Parkinsonian Symptoms and Ayurveda 92
5.2.1 Equivalent Parkinsonian Symptoms in Ayurveda 92
5.2.2 Treating Parkinsonian Symptoms with Ayurvedic Preparations 93
5.3 Medicinal Plants in the Ayurvedic Formulation for Parkinson’s Disease Therapy 94
5.3.1 Mechanism of Action of Ayurvedic Preparation in PD 96
5.3.1.1 Mucuna pruriens 96
5.3.1.2 Hyoscyamus niger 96
5.3.1.3 Withania somnifera 96
5.3.1.4 Sida cordifolia 97
5.4 Concluding Remarks 97
Abbreviations 97
References 98

6 Lipid Peroxidation and Mitochondrial Dysfunction in Alzheimer’s and Parkinson’s Diseases: Role of Natural Products as Cytoprotective Agents 107
Carlos Fernández-Moriano, Elena González-Burgos, and Maria Pilar Gómez-Serranillos
6.1 Introduction 107
6.1.1 Oxidative Stress 107
6.1.2 Lipid Peroxidation 111
6.1.3 Mitochondrial Dysfunction 114
6.1.4 Lipid Peroxidation and Mitochondrial Dysfunction in PD 115
6.1.4.1 Lipid Peroxidation 116
6.1.4.2 Mitochondrial Dysfunction 116
6.1.5 Lipid Peroxidation and Mitochondrial Dysfunction in AD 116
6.1.5.1 Lipid Peroxidation 117
6.1.5.2 Mitochondrial Dysfunction 117
6.2 History and Context 117
6.3 Potential Therapeutic Agents with Natural Origin: Current Knowledge on the Discovery of Newer Drugs 119
6.3.1 Flavonoids 119
6.3.2 Vitamins 121
6.3.3 Carotenoids 123
6.3.4 Alkaloids 125
6.3.5 Non-flavonoid Phenolic Compounds 126
6.3.6 Terpenes 129
6.3.7 Other Compounds 130
6.3.8 Plant Extracts 132
6.4 Future Trends in Research 132
6.5 Concluding Remarks 133
Abbreviations 134
References 135

7 Marine-Derived Anti-Alzheimer’s Agents of Promise 153
Kapil Dev and Rakesh Maurya
7.1 Introduction 153
7.2 Identification of Potent Anti-Alzheimer’s Agents from Marine Sources 154
7.2.1 Cholinergic Hypothesis in Treatment of Alzheimer’s Disease 154
7.2.1.1 Cholinesterase Inhibitors 154
7.2.1.2 Nicotinic Acetylcholine Receptor Agonists 160
7.2.2 Amyloid Cascade Hypothesis in the Treatment of Alzheimer’s Disease 161
7.2.2.1 Secretase Inhibitors 161
7.2.2.2 Anti-aggregation and Clearance Promoters 166
7.2.3 Kinase Modulators in the Treatment of Alzheimer's Disease (Tau Hypothesis) 167
7.2.4 Antioxidant Natural Products 171
7.3 Molecules in Clinical Trials for Alzheimer’s Disease from Marine Sources 171
7.4 Concluding Remarks 172
Acknowledgments 172
Abbreviations 172
References 173

8 Natural Products against Huntington’s Disease (HD): Implications of Neurotoxic Animal Models and Transgenics in Preclinical Studies 185
Abhijit Dey
8.1 Introduction 185
8.2 Methodology 186
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3</td>
<td>Neurotoxic In Vitro and In Vivo Anti-HD Models</td>
<td>188</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Excitotoxic Lesion Models</td>
<td>194</td>
</tr>
<tr>
<td>8.3.1.1</td>
<td>Kainic Acid</td>
<td>194</td>
</tr>
<tr>
<td>8.3.1.2</td>
<td>Quinolinic Acid</td>
<td>195</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Metabolic Toxin Models</td>
<td>195</td>
</tr>
<tr>
<td>8.3.3</td>
<td>3-Nitropropionic Acid</td>
<td>196</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Transgenic Mouse Models</td>
<td>197</td>
</tr>
<tr>
<td>8.3.4.1</td>
<td>Knock-In and Knockout Mouse Models</td>
<td>198</td>
</tr>
<tr>
<td>8.3.4.2</td>
<td>Virus-Mediated Mutated polyQ Tracts and mHtt Models</td>
<td>198</td>
</tr>
<tr>
<td>8.3.4.3</td>
<td>Transgenic Primate Models</td>
<td>198</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Fly (Drosophila) Models</td>
<td>199</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Caenorhabditis elegans Model</td>
<td>199</td>
</tr>
<tr>
<td>8.3.7</td>
<td>Yeast HD Models</td>
<td>200</td>
</tr>
<tr>
<td>8.3.8</td>
<td>Cellular Models of HD</td>
<td>200</td>
</tr>
<tr>
<td>8.4</td>
<td>Anti-HD Natural Products and Implications of HD Models</td>
<td>200</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Anti-HD Properties of Medicinal Plants</td>
<td>200</td>
</tr>
<tr>
<td>8.4.1.1</td>
<td>Bacopa monnieri (L.) Wettst. (Plantaginaceae)</td>
<td>200</td>
</tr>
<tr>
<td>8.4.1.2</td>
<td>Boerhaavia diffusa L. (Nyctaginaceae)</td>
<td>201</td>
</tr>
<tr>
<td>8.4.1.3</td>
<td>Calendula officinalis L. (Asteraceae)</td>
<td>201</td>
</tr>
<tr>
<td>8.4.1.4</td>
<td>Cannabis sativa L. (Cannabaceae)</td>
<td>201</td>
</tr>
<tr>
<td>8.4.1.5</td>
<td>Centella asiatica (L.) Urb. (Asteraceae)</td>
<td>202</td>
</tr>
<tr>
<td>8.4.1.6</td>
<td>Convolvulus pluricaulis Choisy (Convolvulaceae)</td>
<td>202</td>
</tr>
<tr>
<td>8.4.1.7</td>
<td>Garcinia kola Heckel (Clusiaceae)</td>
<td>203</td>
</tr>
<tr>
<td>8.4.1.8</td>
<td>Gastrodia elata Blume (Orchidaceae)</td>
<td>203</td>
</tr>
<tr>
<td>8.4.1.9</td>
<td>Ginkgo biloba L. (Ginkgoaceae)</td>
<td>203</td>
</tr>
<tr>
<td>8.4.1.10</td>
<td>Luehea divaricata Mart. (Malvaceae)</td>
<td>204</td>
</tr>
<tr>
<td>8.4.1.11</td>
<td>Olea europaea L. (Oleaceae)</td>
<td>204</td>
</tr>
<tr>
<td>8.4.1.12</td>
<td>Panax ginseng C.A. Mey. and Panax quinquefolius L. (Araliaceae)</td>
<td>204</td>
</tr>
<tr>
<td>8.4.1.13</td>
<td>Psoralea corylifolia L. (Fabaceae)</td>
<td>204</td>
</tr>
<tr>
<td>8.4.1.14</td>
<td>Punica granatum L. (Lythraceae)</td>
<td>205</td>
</tr>
<tr>
<td>8.4.1.15</td>
<td>Valeriana officinalis L. (Caprifoliaceae)</td>
<td>205</td>
</tr>
<tr>
<td>8.4.1.16</td>
<td>Withania somnifera L. (Dunal) (Solanaceae)</td>
<td>205</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Anti-HD Activity of Phytochemicals</td>
<td>205</td>
</tr>
<tr>
<td>8.4.2.1</td>
<td>α-Mangostin</td>
<td>205</td>
</tr>
<tr>
<td>8.4.2.2</td>
<td>Astragalan</td>
<td>206</td>
</tr>
<tr>
<td>8.4.2.3</td>
<td>Berberine</td>
<td>206</td>
</tr>
<tr>
<td>8.4.2.4</td>
<td>Celastrol</td>
<td>206</td>
</tr>
<tr>
<td>8.4.2.5</td>
<td>Curcumin</td>
<td>206</td>
</tr>
<tr>
<td>8.4.2.6</td>
<td>(−)-Epigallocatechin-gallate</td>
<td>206</td>
</tr>
<tr>
<td>8.4.2.7</td>
<td>Ferulic Acid</td>
<td>207</td>
</tr>
<tr>
<td>8.4.2.8</td>
<td>Fisetin</td>
<td>207</td>
</tr>
<tr>
<td>8.4.2.9</td>
<td>Galantamine</td>
<td>207</td>
</tr>
<tr>
<td>8.4.2.10</td>
<td>Genistein</td>
<td>207</td>
</tr>
<tr>
<td>8.4.2.11</td>
<td>Ginsenosides</td>
<td>207</td>
</tr>
<tr>
<td>8.4.2.12</td>
<td>Hesperidin</td>
<td>207</td>
</tr>
<tr>
<td>8.4.2.13</td>
<td>Kaempferol</td>
<td>208</td>
</tr>
</tbody>
</table>
9.6 Natural Plants against Epilepsy 256
 9.6.1 *Nardostachys jatamansi* (Jatamansi) 256
 9.6.2 *Cotyledon orbiculata* (Seredile, Plakkie, Imphewula) 256
 9.6.3 *Laurus nobilis* 256
 9.6.4 *Bacopa monnieri* (Brahmi) 256
 9.6.5 *Rhizoma pinelliae* 257
 9.6.6 *Taxus wallichiana* (Himalayan Yew) 257
 9.6.7 *Sutherlandia frutescens* (Umwele, Cancerbush) 257
 9.6.8 *Ficus platyphylla* (Dell-Holl) 257
 9.6.9 *Scutellaria baicalensis* (Skullcaps) 257
 9.6.10 *Harpagophytum procumbens* (Devil’s Claw) 258
 9.6.11 *Delphinium denudatum* (Jadwar) 258
 9.6.12 *Withania somnifera* (Ashwagandha): 258
 9.6.13 *Magnolia grandiflora* (Him-Champa): 258
 9.7 Natural Plants Examined in Epilepsy 259
 9.7.1 Capsaicin 259
 9.7.2 Curcumin 259
 9.7.3 Piperine 259
 9.7.4 Quercetin 260
 9.7.5 Cod Liver Oil 260
 9.7.6 Vitamin C 260
 9.7.7 Lycopene 261
 9.7.8 Coenzyme Q10 261
 9.7.9 Resveratrol 261
 9.8 German Herbs in Epilepsy 262
 9.9 Complement and Alternative Medicine 263
 9.9.1 Psychological Therapies and Mind–Body Techniques 263
 9.9.2 Homeopathy 263
 9.9.3 Acupuncture 263
 9.10 Marketed Formulation of Natural Products in India 264
 9.11 Herbs That Induce Seizures 264
 9.12 Interaction of Natural Products with Antiepileptic Drugs (AEDs) 264
 9.13 Concluding Remarks 267

References 268

10 Neuroprotective Effects of Flavonoids in Epilepsy 279
 Hossein Hosseinzadeh and Marjan Nassiri-Asl
 10.1 Introduction 279
 10.2 Natural Flavonoids with Antiepileptic Potential 281
 10.2.1 Rutin 281
 10.2.2 Quercetin 281
 10.2.3 Vitexin 281
 10.2.4 Hesperidin 284
 10.2.5 Apigenin 284
 10.2.6 Oroxylin A 284
 10.2.7 Wogonin 284
 10.2.8 Baicalein 284
10.2.9 Luteolin 285
10.2.10 Hispidulin 285
10.2.11 Naringin 285
10.3 Discovery and Development of Newer Agents 285
10.4 Concluding Remarks 286
Abbreviations 286
References 287

11 The Role of Noncompetitive Antagonists of the N-Methyl-d-aspartate (NMDA) Receptors in Treatment-Resistant Depression 293
Gianluca Serafini, Shawn Hayley, Mehdi Ghasemi, and Mario Amore
11.1 Introduction 293
11.2 Noncompetitive Antagonists of the NMDA Receptors: Ketamine and Its Mechanism of Action 294
11.2.1 The Antidepressant Efficacy of Ketamine 295
11.2.2 Safety and Tolerability of Ketamine 296
11.3 Other Noncompetitive NMDA Antagonists: Selective GluN2B Subunit NMDA Antagonists 297
11.4 Other Noncompetitive NMDA Antagonists: Glycine Binding Site Modulators 298
11.5 AMPA Receptor Activation: A Possible Adjunctive Antidepressant Role? 299
11.6 Discussion and Future Directions 300
11.7 Concluding Remarks 301
Abbreviations 302
References 302

12 Safety and Efficacy of Ashwagandha (Withania somnifera) 313
Shri K. Mishra, Bharathi A. Venkatachalapathy, and Hadi M. Khanli
12.1 Introduction 313
12.2 Ashwagandha 314
12.2.1 The Plant 314
12.2.2 Safety and Toxicological Evaluation of Withania somnifera 315
12.2.3 Effects of Ashwagandha on Muscle Sarcopenia 316
12.3 Discussion 317
12.4 Concluding Remarks 317
Abbreviations 318
References 318

13 Cannabinoids: A Group of Promising Neuroprotective Agents 321
Laura R. Caltana and Alicia Brusco
13.1 Introduction 321
13.1.1 The History of Marijuana 321
13.1.2 Current Context 322
13.2 The Cannabinoid System 322
13.3 Cannabinoids and Neuroprotection 325
13.3.1 Cannabinoids in Hypoxia/Ischemia 325