Modern Gold Catalyzed Synthesis
Edited by
A. Stephen K. Hashmi and
F. Dean Toste

Modern Gold Catalyzed
Synthesis
Further Reading

Mohr, F. (ed.)
Gold Chemistry
Highlights and Future Directions
2009
ISBN: 978-3-527-32086-8

Laguna, A. (ed.)
Modern Supramolecular Gold Chemistry
Gold-Metal Interactions and Applications
2008
ISBN: 978-3-527-32029-5

Dupont, J., Pfeffer, M. (eds.)
Palladacycles
Synthesis, Characterization and Applications
2008
ISBN: 978-3-527-31781-3

Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J. (eds.)
Handbook of Heterogeneous Catalysis
8 Volumes
2008
ISBN: 978-3-527-31241-2

Ding, K., Uozumi, Y. (eds.)
Handbook of Asymmetric Heterogeneous Catalysis
2008
ISBN: 978-3-527-31913-8
Modern Gold Catalyzed Synthesis
Contents

List of Contributors XIII

1 Hydrochlorination of Acetylene Catalyzed by Gold 1

Marco Conte and Graham J. Hutchings

1.1 Introduction 1

1.2 Reactions of Alkynes Using Gold Chloride as Catalyst 2

1.3 The Correlation of E° with the Activity of Gold for the Hydrochlorination of Acetylene 4

1.3.1 The Initial Correlation 4

1.3.2 Conceptual Developments of the E° Correlation 5

1.3.3 Further Study of the Correlation of E° with the Activity of Platinum Group Metals 8

1.3.4 The E° Correlation Applied to Homogeneous and Nonhomogeneous Gold Nanoalloys 9

1.4 Central Role of Au$^{3+}$ and Regeneration of Au/C Catalysts 12

1.5 Reaction Mechanism of Alkynes Over Au/C Catalysts 14

1.5.1 Effect of the Individual Components of the Reactants to Au/C 14

1.5.2 Reaction of Higher Alkynes Over Au/C 16

1.5.3 Hydrochlorination of 1-hexyne, phenylacetylene, and 2-hexyne Over Au/C Catalyst 17

1.5.4 Computational Studies of the Reaction of Acetylene Over Au/C 21

1.6 Chemical Origin of the E° Correlation and General Remarks 22

1.7 Commercial Processes and Economic Aspects of Vinyl Chloride Monomer Manufacture 24

References 25

2 Gold-Catalyzed Reduction Reactions 27

Avelino Corma and Pedro Serna

2.1 Introduction 27

2.2 Hydrogenation of Multiple C=C Bonds. Role of the Gold Oxidation State 28

2.2.1 Introduction 28
2.2.2	First Solid Gold Catalysts: from Extended Au Surfaces to Highly Dispersed Nanoparticles	28
2.2.3	Recent Advances in Supported Gold Chemistry: from Highly Dispersed Nanoparticles to Individual Supported Au Atoms	31
2.2.4	Summary	34
2.3	Hydrogenation of α,β-Unsaturated Aldehydes	34
2.3.1	Introduction	34
2.3.2	Chemistry of Gold Nanoparticles: First Studies and Hypotheses	36
2.3.3	Strong Metal–Support Interactions: Effect of Electronic Transfers and Decoration on the Gold Nanoparticles	37
2.3.4	Effect of Morphological Factors: Size and Shape	38
2.3.5	Summary	39
2.4	Hydrogenation of Substituted Nitroaromatic Compounds	41
2.4.1	Introduction	41
2.4.2	Gold Catalysts for the Production of Substituted Nitro Compounds	42
2.4.3	Hydrogenation of –NO2 Groups on Gold Catalysts: Reaction Pathway	43
2.4.4	Chemoselectivity of Gold Catalysts for the Hydrogenation of NO2 groups	47
2.4.5	Activity of Gold Catalysts for the Hydrogenation of NO2 groups	49
2.4.6	Summary	51

References | 51 |

3 | Gold-Catalyzed Benzannulations: Asao–Yamamoto Benzopyrylium Pathway | 55 |

Naoki Asao and Yoshinori Yamamoto |

3.1	Introduction	55
3.2	Acetylenic Compounds as 2π Systems	56
3.3	Enols as 2π Systems	60
3.4	Enol Ethers as 2π Systems	62
3.5	Benzyne as 2π Systems	63
3.6	Synthesis of Phthalazine Derivatives	64
3.7	Application to the Synthesis of Angucyclinone Antibiotics and Other Applications in Total Synthesis	65
3.8	Copper-Catalyzed Benzannulations	67
3.9	Conclusion	68

References | 69 |

4 | Gold-Catalyzed Reactions of Propargyl Esters, Propargyl Alcohols, and Related Compounds | 75 |

Pablo Mauleon and F. Dean Toste |

| 4.1 | Introduction and Extent of This Chapter | 75 |
| 4.2 | Propargyl Esters | 76 |
4.2.1 General Mechanistic Considerations 76
 4.2.1.1 [2,3]- and [3,3]-Rearrangements 77
 4.2.1.2 Reversibility 78
 4.2.1.3 Ionization 80
 4.2.1.4 Double [2,3]-Rearrangements 83
 4.2.2 Reactions Initiated by [2,3]-Rearrangements 85
 4.2.2.1 The Rautenstrauch Rearrangement 86
 4.2.2.2 Alkene Cyclopropanations 87
 4.2.2.3 Enantioselective Transformations After [2,3]-Rearrangements 92
 4.2.2.4 Nucleophilic Attack on Gold Carbenoids Generated After [2,3]-Rearrangements 94
 4.2.3 Reactions Initiated by [3,3]-Rearrangements 96
 4.2.3.1 Nucleophilic Double Bonds 97
 4.2.3.2 Triple Bonds 99
 4.2.3.3 Aromatic Groups 100
 4.2.3.4 Alkyl Groups 100
 4.2.3.5 Heteroatoms 102
 4.2.3.6 Electrophilic Trapping of Vinyl–Gold Intermediates 103
 4.2.3.7 Other Processes 104
 4.3 Propargyl Ethers 107
 4.3.1 Propargyl Vinyl Ethers 107
 4.3.2 Propargyl Alkyl Ethers 110
 4.3.3 Other Ether Substitution Patterns 113
 4.4 Propargyl Alcohols 115
 4.4.1 Alkyne Hydration 115
 4.4.2 Meyer–Schuster Rearrangements 115
 4.4.3 Nucleophilic Substitution at the Propargylic Position 117
 4.4.4 Ring Expansions 117
 4.4.5 Other Reactions Involving Propargyl Alcohols 119
 4.5 Propargyl Amines 121
 4.6 Propargyl Carbonates, Amides, and Carbamates 124
 4.7 Other Propargyl Substitution Patterns 127
 4.8 Conclusion 129
 References 130

5 Intramolecular Hydroarylation of Alkynes 135
 Paula de Mendoza and Antonio M. Echavarren
 5.1 Introduction 135
 5.2 Intramolecular Reactions of Arenes with Alkynes 137
 5.3 Intramolecular Reactions of Electron-Rich Heteroarenes with Alkynes 142
 5.4 Conclusion and Outlook 148
 References 148
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Gold–Alkyne Complexes</td>
<td>153-167</td>
</tr>
<tr>
<td>7</td>
<td>Gold–Alkene Complexes</td>
<td>175-196</td>
</tr>
<tr>
<td>8</td>
<td>Hydration and Hydroalkoxylation of CC Multiple Bonds</td>
<td>201-220</td>
</tr>
</tbody>
</table>
8.3.6 Reactions Involving Propargylic Ethers 224
8.4 Hydration and Hydroalkoxylation of CC Double Bonds
(Allenes and Alkenes) 226
8.4.1 Addition of Alcohols to Allenes 226
8.4.2 Cyclization of Allenyl and Propargyl Ketones 227
8.4.3 Addition of Alcohols to Alkenes 230
References 234

9 Gold-Catalyzed Aldol and Related Reactions 237
Christoph Hubbert and A. Stephen K. Hashmi
9.1 The Gold-Catalyzed Aldol Reaction 237
9.1.1 Synthetic Scope 239
9.1.1.1 Reactions of Aldehydes with Methyl Isocyanoacetate 239
9.1.1.2 Reactions of Aldehydes with α-Substituted Isonitriles 241
9.1.1.3 Reactions of Aldehydes with Alkyl Isocyanoacetates 242
9.1.1.4 Reactions of Aldehydes with Alkyl Isocyanoacetamides 243
9.1.1.5 Reactions of Aldehydes with α-Isocyano Weinreb Amide 244
9.1.1.6 Reactions of Aldehydes with Isocyano Phosphonates 245
9.1.1.7 Reactions of Aldehydes with α-Keto Esters 246
9.1.2 Structure of the Ligand 247
9.1.2.1 Internal Cooperativity of Chirality 248
9.1.2.2 Conformation of the Pendant Side Chain 251
9.1.3 Mechanistic Aspects 253
9.1.3.1 The First Transition-State Model 253
9.1.3.2 Structure of the Ferrocenyl–Gold(I) Complex 253
9.1.3.3 Mechanistic Aspects 253
9.2 Related Reactions 257
9.2.1 Synthesis of Dihydroimidazole 257
9.2.2 Mannich Reactions 258
9.2.3 Michael Reactions 259
References 260

10 Gold-Catalyzed Oxidation Reactions: Oxidation of Alkenes 263
Yuanhong Liu
10.1 Introduction 263
10.2 Epoxidation Reactions 263
10.3 Aziridination Reactions 268
10.4 Oxidative Cleavage of C=C Double Bonds 269
10.5 Oxygen Transfer to Carbenoids 270
References 271

11 Gold-Catalyzed Oxygen-Atom Transfer to Alkynes 273
Maria Camila Blanco Jaimes and A. Stephen K. Hashmi
11.1 Introduction 273
11.2 Oxygen-Atom Transfer from NO Groups 273
11.2.1 Nitrones 274
11.2.2 Nitro Compounds 276
11.2.3 N-Oxides 277
11.3 Oxygen-Atom Transfer from Sulfoxides 280
11.4 Oxygen-Atom Transfer from Epoxides 282
11.5 Gold-Catalyzed Oxidative Coupling 283
11.5.1 Introduction 283
11.5.2 Functionalization of C(sp^2)–H Bonds 284
11.5.3 Gold-Catalyzed Nucleophilic Addition–Oxidative Coupling Reactions 287
References 295

12 Gold-Catalyzed Additions to Alkenes: N-Nucleophiles 297
Zigang Li, David A. Capretto, and Chuan He
References 302

13 Gold-Catalyzed Additions to Alkenes: O-Nucleophiles 303
Zigang Li, David A. Capretto, and Chuan He
References 307

14 Oxidation of Alcohols and Carbohydrates 309
Cristina Della Pina, Ermelinda Falletta, and Michele Rossi
14.1 Introduction 309
14.2 Selective Oxidation of Alcohols 310
14.2.1 Catalyst Preparation 311
14.2.2 Oxidation of Diols 312
14.2.3 Oxidation of Other Polyols 315
14.2.3.1 Glycerol 315
14.2.3.2 Sorbitol 317
14.2.3.3 Other Alcohols 317
14.2.3.4 Amino Alcohols 318
14.3 Selective Oxidation of Carbohydrates 320
14.3.1 Oxidation of Glucose to Sodium Gluconate 321
14.3.1.1 Kinetics and Modeling 323
14.3.2 Synthesis of Free Gluconic Acid 325
14.4 Future Applications 326
14.5 Conclusion 327
References 328

15 Applications of Gold-Catalyzed Reactions to Natural Product Synthesis 331
Matthias Rudolph
15.1 Introduction 331
15.2 Addition of Heteroatom Nucleophiles to Alkynes 332
15.2.1 Hydration of Alkynes: Pterosin B and C 332
15.2.2 Tandem Reaction Including Hydration of Alkynes, Elimination, and Conjugate Addition: (+)-Andrachcinidine 332
References
15.2.3 Hydroalkoxylation of Alkynes: Bryostatin 16 333
15.2.4 Bis-spiroketalization of Alkynes: A–D Ring of Azaspiracid and
(−)-Ushikulide A 334
15.2.5 Intramolecular Hydroamination of C–C Triple Bonds:
Solenopsin A, Comunesin B, Mersicarpine, and Nitidine 336
15.3 Addition of Heteroatom Nucleophiles to Allenes 339
15.3.1 Intermolecular Hydroalkoxylation of Allenes: Citreoviral,
(−)-Isocyclocapiteline, (−)-Isochrysotricine, and Bejarol 339
15.3.2 Intermolecular Hydroamination of Allenes: Swainsonine 341
15.3.3 Intermolecular Hydroarylation of Allenes: (−)-Rhazinilam 342
15.4 Cycloadditions via Pyrylium Intermediates from
α-Alkynylaclylarenes 343
15.5 Rearrangements of Propargyl Esters 346
15.5.1 1,2-Acyl Shift of Propargyl Esters: α-Diazoacetone Equivalents 346
15.5.2 1,3-Acyl Shift of Propargyl Esters and Subsequent Tandem
Cyclization of Ene Vinylallenes: Δ9(12)-Cappnellene 347
15.6 Skeletal Rearrangement of 3-Butynyl-N-Oxides: (±)-Cermizine
and (±)-Lentiginosine 349
15.7 Enyne Cyclizations 350
15.7.1 Silylenol Ethers as Nucleophiles: Platencin, (+)-Lycopladin A,
and (+)-Fawcettimine 350
15.7.2 Iodoalkynes in Enyne Cyclizations: (+)-Lycopladine A 351
15.7.3 Furan–yne Cyclization: (±)-Jungianol 352
15.7.4 Tandem Process of Enyne Rearrangement and Prins Cyclization:
(±)-Orientalol and (−)-Englerin A 353
15.7.5 Tandem Enyne Cycloisomerization and Semipinacol Rearrangement:
Ventricos-7(13)-ene 355
15.8 Propargyl Claisen Rearrangement: Azadirachtin 356
15.9 Gold-Catalyzed C–H Activation: (±)-Pterocarpan and Crassifolone 356
15.10 Gold-Catalyzed Allylic Amination: (±)-Angustureine 358
15.11 Catalytic Asymmetric Aldol Reaction of Isocyanocetates and
Aldehydes 359
References 361

16 Gold-Catalyzed Addition Reactions to Allenes 363
Christian Winter and Norbert Krause
16.1 Introduction 363
16.2 Addition of Heteroatom Nucleophiles 363
16.2.1 Addition of Oxygen Nucleophiles 364
16.2.2 Addition of Nitrogen Nucleophiles 376
16.2.3 Addition of Sulfur Nucleophiles 381
16.3 Addition of Carbon Nucleophiles 382
16.4 Conclusion 386
References 386
Index 391
List of Contributors

Naoki Asao
Tohoku University
Graduate School of Science
Department of Chemistry
Sendai 980-8578
Japan

Maria Camila Blanco Jaimes
Universität Heidelberg
Organisch-Chemisches Institut
Im Neuenheimer Feld 270
69120 Heidelberg
Germany

David A. Capretto
University of Chicago
Department of Chemistry
5735 South Ellis Avenue
Chicago
IL 60635
USA

Maria Agostina Cinellu
Università di Sassari
Dipartimento di Chimica
Via Vienna 2
07100 Sassari
Italy

Marco Conte
Cardiff University
School of Chemistry
Cardiff Catalysis Institute
Cardiff CF10 3AT
UK

Avelino Corma
Universidad Politécnica de Valencia
Instituto de Tecnología Química
Avenida de los Naranjos s/n
46022 Valencia
Spain

Cristina Della Pina
Università degli Studi di Milano
Dipartimento di Chimica Inorganica,
Metallorganica e Analitica
Via Venezian 21
20133 Milan
Italy

Paula de Mendoza
Institute of Chemical Research of
Catalonia (ICIQ)
Avinguda Països Catalans 16
43007 Tarragona
Spain