Synthetic Receptors for Biomolecules
Design Principles and Applications
Monographs in Supramolecular Chemistry

Series Editors:
Professor Philip Gale, University of Southampton, UK
Professor Jonathan Steed, Durham University, UK

Titles in this Series:
1: Cyclophanes
2: Calixarenes
3: Crown Ethers and Cryptands
4: Container Molecules and Their Guests
5: Membranes and Molecular Assemblies: The Synkinetic Approach
6: Calixarenes Revisited
7: Self-assembly in Supramolecular Systems
8: Anion Receptor Chemistry
9: Boronic Acids in Saccharide Recognition
10: Calixarenes: An Introduction, 2nd Edition
11: Polymeric and Self Assembled Hydrogels: From Fundamental Understanding to Applications
12: Molecular Logic-based Computation
13: Supramolecular Systems in Biomedical Fields
14: Synthetic Receptors for Biomolecules: Design Principles and Applications

How to obtain future titles on publication:
A standing order plan is available for this series. A standing order will bring delivery of each new volume immediately on publication.

For further information please contact:
Book Sales Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK
Telephone: +44 (0)1223 420666, Fax: +44 (0)1223 420247
Email: booksales@rsc.org
Visit our website at http://www.rsc.org/Shop/Books/
Synthetic Receptors for Biomolecules
Design Principles and Applications

Edited by

Bradley D. Smith
University of Notre Dame, Indiana, USA
Email: smith.115@nd.edu
Preface

The field of supramolecular chemistry continues to grow at an accelerated pace, and it is especially active at the interface of chemistry and biology. Pioneering research conducted during the last quarter of the 20th century focused initially on synthetic receptors for structurally simple guests, such as metal cations. As the field expanded, researchers pursued more elaborate synthetic receptors for binding anions and small neutral molecules. The early pioneers recognized the technical advantages that would be gained by developing synthetic mimics of large protein-based receptor systems, such as antibodies, enzymes, and membrane transporters. But time was needed for the field to discover and conceptualize the fundamental physical-organic factors that produce strong and selective binding of biological molecules in aqueous solution. Also required were new synthetic methods and nanoscale fabrication techniques for reliable construction of suitably functionalized synthetic receptors with appropriate geometric arrangement of molecular recognition motifs. These intellectual and technical attributes have now been acquired and merged to create effective receptor design and discovery platforms.

The classic approach to synthetic receptor development is a step-wise process that involves de novo molecular design followed by receptor synthesis and evaluation of supramolecular performance. For some types of research projects, this approach is quite suitable, but for others it is unacceptably slow and inefficient. In response, researchers have developed alternative accelerated discovery processes. One strategy is to prepare libraries of multiple receptor candidates and rapidly screen them for library members that exhibit appropriate binding affinity. A conceptually powerful refinement of this screening approach is to create dynamic combinatorial libraries of receptor building blocks that have been structurally programmed to self-assemble in the presence of a suitable guest template and create a
high-affinity receptor. Using these complementary methods, the field has produced biomolecule-binding systems with functional properties for various applications in complicated biological matrices, including living subjects. These applications are the basis of emerging new nanoscale technologies that will have broad future impact in modern society.

This volume describes the receptor design principles and discovery algorithms, and shows how they have been used to produce synthetic receptors for each major class of biomolecules. A unique feature of the book is the presentation style. To date, virtually all review articles or books on synthetic receptors have been presented in a format that is primarily a list of receptor chemical structures with an ensuing discussion of the various biomolecule guests they bind. This book reverses the format and devotes a chapter to each specific class of biomolecule, with a methodical summary of the different biological and synthetic receptors. The systematic layout allows readers to quickly identify the sections that are relevant to their information needs. The target audience is a broad group of scientists and engineers (academic and industrial) who have a biomolecule targeting problem in mind and want to know what synthetic receptors will likely lead to a solution. What are the unique molecular recognition challenges for each type of biomolecule? What is the best synthetic receptor system for a specific type of biomolecule and a specific type of application? Another large group of readers is the regular community of supramolecular chemists who are developing next-generation synthetic receptors with improved performance. They want an integrated picture of the current state of the art and a sense of future directions and expected challenges.

The opening chapter provides a concise summary of the technical applications that utilize synthetic receptors for biomolecules. The applications are classified broadly into four groups: separations, imaging and sensing, catalysis, and pharmaceutical activity. The various receptor classes are separated into six categories: organic molecules, inorganic molecules, synthetic oligomers, molecular imprinted polymers, dendrimers, and nanoparticles. The chemical and supramolecular attributes of each receptor category are summarized, along with illustrative examples of how the synthetic receptors are employed for each type of application. The second chapter is a tutorial on the fundamental structural and thermodynamic factors that affect biomolecule recognition, and includes the following topics: non-covalent interactions, receptor preorganization and shape complementarity, cooperative binding, solvent effects, and enthalpy–entropy compensation. There is also an informative presentation of the various ways to design and discover new classes of synthetic receptors.

The next eight chapters provide a systematic summary of the best-known receptors for alkali metal cations, organic and inorganic anions, carbohydrates, nucleosides and nucleotides, oligonucleotides and nucleic acids, amino acids and peptides, protein surfaces, and polar lipids. Each chapter follows a similar structural format of: (a) chemical structure and physical properties of the biomolecule; (b) biological recognition of the biomolecule;
(c) synthetic receptors for the biomolecule; and (d) future directions and challenges.

The order of chapters is well suited for instructors who wish to use the book for a graduate-level class on supramolecular chemistry. Alternatively, the book is an excellent source of supplementary information for a range of undergraduate chemistry, biochemistry, health science, and engineering classes. A valuable pedagogical addition is an accompanying series of PowerPoint slides containing graphics from each of the 10 chapters. The PowerPoint files are provided as electronic supplementary information on the Royal Society of Chemistry website (DOI: 10.1039/9781782622062).

I am grateful to the chapter authors for completing their writing tasks in a timely fashion, and for agreeing to follow a consistent presentation format. I warmly acknowledge the wonderful technical assistance of Theresa Bollinger, Kasey Clear, Evan Peck, and the publication staff at the Royal Society of Chemistry. I am grateful for funding and resources from the University of Notre Dame, and the US National Science Foundation (grant: CHE1401783).

Bradley D. Smith
Notre Dame, IN, USA
Contents

Chapter 1 Applications of Synthetic Receptors for Biomolecules
Evan M. Peck and Bradley D. Smith

1.1 Biomolecule Recognition 1

1.2 Types of Synthetic Receptors 3

1.2.1 Small Organic Molecules 4

1.2.2 Inorganic Molecules 6

1.2.3 Synthetic Oligomers 7

1.2.4 Molecular Imprinted Polymers 9

1.2.5 Dendrimers 11

1.2.6 Nanoparticles 12

1.3 Common Applications 14

1.3.1 Separations 14

1.3.2 Imaging and Sensing 18

1.3.3 Catalysis 23

1.3.4 Pharmaceutical Activity 27

1.4 Future Directions 32

1.4.1 Logic Devices 32

1.4.2 Biomolecule Responsive Materials 33

1.4.3 Drug Delivery 33

1.4.4 Biomolecule-fueled Molecular Machines 34

Acknowledgement 34

References 34
Chapter 2 Design and Synthesis of Synthetic Receptors for Biomolecule Recognition

2.1 The Foundations of Host–Guest Chemistry: Preorganization and Complementarity 39
2.2 Strengths of Molecular Recognition Interactions 43
2.3 Solvent Dependence of Binding Interactions 46
2.4 Reversible Covalent Bonding 48
2.5 From Plastic Models to Modern Computational Methods 50
2.6 Common Synthetic Receptor Scaffolds 56
 2.6.1 Crown Ethers 57
 2.6.2 Calix[n]arenes 57
 2.6.3 Calix[n]pyrroles 58
 2.6.4 Cucurbit[n]urils 58
 2.6.5 Cyclodextrins 60
 2.6.6 Pinwheel Scaffolds 61
2.7 Synthetic Receptors Derived from Combinatorial Techniques 62
2.8 Dynamic Combinatorial Libraries for Receptor Discovery 66
2.9 Cooperativity 68
2.10 Entropy–Enthalpy Compensation 72
2.11 Cross-reactive Arrays 76
2.12 Conclusion 79
References 80

Chapter 3 Synthetic Receptors for Alkali Metal Cations

George W. Gokel and Joseph W. Meisel

3.1 Complexation of Alkali Metal Cations 86
 3.1.1 Coordination Complexes, Receptors, and Dynamics 87
3.2 The Forces Involved in Complexation 90
 3.2.1 Enthalpy–Entropy Compensation 92
 3.2.2 Drawing Structural Conclusions from Binding Constants 92
3.3 A Brief Overview of Complexation Constants

- 93

3.4 The Dynamics of the Complexation Process

- 94
 - 3.4.1 Solvent Effect on Complexation
 - 97

3.5 Crown Ethers and Related Receptor Types

- 98
 - 3.5.1 Crown Ethers
 - 98
 - 3.5.2 Cryptands
 - 98
 - 3.5.3 Spherands
 - 100
 - 3.5.4 Calixarenes, Cavitands, and Other Complexing Agents
 - 100

3.6 Assessing Complexation

- 102
 - 3.6.1 Calorimetry
 - 103
 - 3.6.2 Ion-selective Electrode Studies
 - 103
 - 3.6.3 Salt Extraction and Colorimetry
 - 103
 - 3.6.4 Comparison of Binding Assays
 - 104
 - 3.6.5 Bulk Membrane Transport Rates
 - 104
 - 3.6.6 Liposomal Membrane Studies
 - 105

3.7 Controlling Transport and Molecular Switching

- 106
 - 3.7.1 Redox Switching
 - 106
 - 3.7.2 Photo-switched Transport
 - 107

3.8 Ammonium Cations and Structural Effects

- 108

3.9 Photoresponsive Receptors

- 109
 - 3.9.1 Detecting Complexation Colorimetrically
 - 110
 - 3.9.2 Detecting Complexation Fluorometrically
 - 110

3.10 Cation Transport

- 111
 - 3.10.1 Design of a Dynamic Cation Carrier
 - 111
 - 3.10.2 Lariat Ethers
 - 112
 - 3.10.3 Cation–π Interactions with Alkali Metal Cations
 - 113

3.11 Salt Complexation: Ditopic Receptors

- 116

3.12 Pore-forming Amphiphiles

- 116
 - 3.12.1 A Cyclodextrin-based Channel
 - 117
 - 3.12.2 Synthetic Amphiphilic Ionophores: Synthetic Ion Channels
 - 118
 - 3.12.3 Hydraphile Biological Activity
 - 123

3.13 Future Challenges

- 123

References

- 123

Chapter 4 Synthetic Receptors for Small Organic and Inorganic Anions

Stefan Kubik

- 129

4.1 Introduction

- 129
4.2 Strategies for Anion Coordination
4.2.1 Electrostatic Interactions Combined with Hydrogen Bonding
4.2.2 Electrostatic Interactions
4.2.3 Hydrogen Bonding
4.2.4 Lewis Acid–Base Coordination
4.2.5 Halogen Bonding
4.2.6 Anion–π Interactions

4.3 Spherical Anions
4.3.1 Anion Properties
4.3.2 Recognition in Nature
4.3.3 Recognition by Synthetic Systems

4.4 Linear Anions
4.4.1 Anion Properties
4.4.2 Recognition in Nature
4.4.3 Recognition by Synthetic Systems

4.5 Trigonal Planar Anions
4.5.1 Anion Properties
4.5.2 Recognition in Nature
4.5.3 Recognition by Synthetic Systems

4.6 Tetrahedral Anions
4.6.1 Anion Properties
4.6.2 Recognition in Nature
4.6.3 Recognition by Synthetic Systems

4.7 Future Directions and Challenges

References
Chapter 8 Synthetic Receptors for Amino Acids and Peptides

Debrabata Maity and Carsten Schmuck

8.1 Properties of Amino Acids and Peptides
8.2 Biological Receptors for Amino Acids and Peptides
8.3 Introduction to Synthetic Receptors
8.4 Synthetic Receptors for Amino Acids
 8.4.1 Amino Acid Recognition Mediated Mainly by Electrostatic Interaction
 8.4.2 Amino Acid Recognition Mediated Mainly by Hydrogen Bonding
 8.4.3 Amino Acid Recognition Mediated by Metal Coordination
 8.4.4 Amino Acid Recognition Based on Nanoparticles
 8.4.5 Reaction-mediated Amino Acid Recognition
8.5 Synthetic Receptors for Peptides
 8.5.1 Peptide Recognition Mediated by Hydrophobic Interactions
 8.5.2 Peptide Recognition Mediated Mainly by Electrostatic Interactions
 8.5.3 Peptide Recognition Mediated by Metal Coordination
 8.5.4 Peptide Recognition by Molecularly Imprinted Polymers
8.6 Future Directions and Challenges
References

Chapter 9 Synthetic Receptors for Protein Surfaces

Moumita Ray, Akash Gupta and Vincent M. Rotello

9.1 Introduction