Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis. Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:

- Methods critically evaluated by leading scientists
- Background information and detailed experimental procedures
- Schemes and tables which illustrate the reaction scope
Category 4

Compounds with Two Carbon–Heteroatom Bonds

Volume 32

X–Ene–X (X = F, Cl, Br, I, O, S, Se, Te, N, P), Ene–Hal, and Ene–O Compounds

Volume Editor

J. Mulzer

Responsible Member of the Editorial Board

E. Schaumann

Authors

C. Chandler A. Pollex
A. Erkkilä S. Rádl
A. S. K. Hashmi M. Sainsbury
B. List G. Sartori
R. Maggi R. R. Torres
V. Milata D. Trauner
U. Nubbemeyer S. Voltrová

2008
Georg Thieme Verlag KG
Stuttgart · New York
Date of publication: September 24, 2008

Copyright and all related rights reserved, especially the right of copying and distribution, multiplication and reproduction, as well as of translation. No part of this publication may be reproduced by any process, whether by photostat or microfilm or any other procedure, without previous written consent by the publisher. This also includes the use of electronic media of data processing or reproduction of any kind.

This reference work mentions numerous commercial and proprietary trade names, registered trademarks and the like (not necessarily marked as such), patents, production and manufacturing procedures, registered designs, and designations. The editors and publishers wish to point out very clearly that the present legal situation in respect of these names or designations or trademarks must be carefully examined before making any commercial use of the same. Industrially produced apparatus and equipment are included to a necessarily restricted extent only and any exclusion of products not mentioned in this reference work does not imply that any such selection of exclusion has been based on quality criteria or quality considerations.

Warning! Read carefully the following: Although this reference work has been written by experts, the user must be advised that the handling of chemicals, microorganisms, and chemical apparatus carries potentially life-threatening risks. For example, serious dangers could occur through quantities being incorrectly given. The authors took the utmost care that the quantities and experimental details described herein reflected the current state of the art of science when the work was published. However, the authors, editors, and publishers take no responsibility as to the correctness of the content. Further, scientific knowledge is constantly changing. As new information becomes available, the user must consult it. Although the authors, publishers, and editors took great care in publishing this work, it is possible that typographical errors exist, including errors in the formulas given herein. Therefore, it is imperative that and the responsibility of every user to carefully check whether quantities, experimental details, or other information given herein are correct based on the user's own understanding as a scientist. Scale-up of experimental procedures published in Science of Synthesis carries additional risks. In cases of doubt, the user is strongly advised to seek the opinion of an expert in the field, the publishers, the editors, or the authors. When using the information described herein, the user is ultimately responsible for his or her own actions, as well as the actions of subordinates and assistants, and the consequences arising therefrom.
As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work *Houben–Weyl Methods of Organic Chemistry* will be published starting in the year 2000.

To reflect the new broader need and focus, this new edition has a new title, *Science of Synthesis, Houben–Weyl Methods of Molecular Transformations*. *Science of Synthesis* will benefit from more than 90 years of experience and will continue the tradition of excellence in publishing synthetic chemistry reference works. *Science of Synthesis* will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of *Science of Synthesis* will provide chemists with the most reliable methods to solve their synthesis problems. *Science of Synthesis* will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make *Science of Synthesis* the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

The Editorial Board

D. Bellus (Basel, Switzerland)
P. J. Reider (New Jersey, USA)
E. N. Jacobsen (Cambridge, USA)
E. Schaumann (Clausthal-Zellerfeld, Germany)
S. V. Ley (Cambridge, UK)
I. Shinkai (Tsukuba, Japan)
R. Noyori (Nagoya, Japan)
E. J. Thomas (Manchester, UK)
M. Regitz (Kaiserslautern, Germany)
B. M. Trost (Stanford, USA)

October 2000
Volume Editor's Preface

Heteroatom- and in particular halogen- and oxygen-substituted alkenes are of central importance in all fields of synthetic organic chemistry. One has just to think about enolates, enol ethers, vinyl trifluoromethanesulfonates, and vinyl halides and their enormous potential for undergoing carbon–carbon and carbon–heteroatom couplings to appreciate the value of this volume within the well-established series of *Science of Synthesis*. Additionally, a variety of less common but equally important heteroatom-substituted alkenes and allenenes are covered in detail.

I would like to express my personal thanks to the many authors who have given their expertise, time, and commitment. It was a pleasure to plan the volume with the exceptional experience and insight provided by Prof. Ernst Schaumann and Dr. Joe Richmond, and to bring it into existence with the immense support of the Thieme editorial team headed by Dr. Fiona Shortt de Hernandez. In particular, I thank Dr. Marcus White for his relentless efforts to get all the chapters delivered, completed, organized, and corrected within a reasonable span of time.

Volume Editor

Johann Mulzer

Vienna, August 2008
Volume 32:
X—Ene—X (*X* = F, Cl, Br, I, O, S, Se, Te, N, P), **Ene—Hal**, and **Ene—O Compounds**

Preface ... 1

Volume Editor’s Preface ... VII

Table of Contents ... XIII

Introduction

J. Mulzer ... 1

32.1 Product Class 1: 1,3-Bis(heteroatom-substituted) Allenes and Analogous Higher Cumulenes

A. S. K. Hashmi .. 13

32.2 Product Class 2: Monofunctionalized Allenes and Higher Cumulenes

A. S. K. Hashmi .. 23

32.3 Product Class 3: 1,2-Bis(heteroatom-substituted) Alkenes

32.3.1 Product Subclass 1: 1,2-Dihaloalkenes

U. Nubbemeyer .. 57

32.3.2 Product Subclass 2: 1-Halo-2-(organooxy)alkenes

U. Nubbemeyer .. 169

32.3.3 Product Subclass 3: 1-Halo-2-(organochalcogeno)alkenes

U. Nubbemeyer .. 201

32.3.4 Product Subclass 4: 1-Nitrogen-Functionalized 2-Haloalkenes

U. Nubbemeyer .. 235

32.3.5 Product Subclass 5: 1-Phosphorus-Functionalized 2-Haloalkenes

U. Nubbemeyer .. 289

32.3.6 Product Subclass 6: 1,2-Bis(organooxy)alkenes

M. Sainsbury ... 299

32.3.7 Product Subclass 7: 1-(Organochalcogeno)-2-(organooxy)alkenes

B. List, C. Chandler, R. R. Torres, and A. Erkkilä 335

32.3.8 Product Subclass 8: 1-Nitrogen-Functionalized 2-(Organoxy)alkenes

B. List, C. Chandler, R. R. Torres, and A. Erkkilä 351

32.3.9 Product Subclass 9: 1-Phosphorus-Functionalized 2-(Organoxy)alkenes

B. List, C. Chandler, R. R. Torres, and A. Erkkilä 361
32.3.10 Product Subclass 10: 1,2-Bis(sulfur-functionalized) Alkenes
C. Chandler, R. R. Torres, A. Erkkilä, and B. List 365

32.3.11 Product Subclass 11: 1-Sulfur-Functionalized 2-(Organochalcogeno)-
alkenes
C. Chandler, R. R. Torres, A. Erkkilä, and B. List 381

32.3.12 Product Subclass 12: 1-Sulfur-Functionalized 2-Nitrogen-Functionalized
Alkenes
C. Chandler, R. R. Torres, A. Erkkilä, and B. List 385

32.3.13 Product Subclass 13: 1-Sulfur-Functionalized 2-Phosphorus-
Functionalized Alkenes
C. Chandler, R. R. Torres, A. Erkkilä, and B. List 399

32.3.14 Product Subclass 14: 1,2-Bis(nitrogen-functionalized) Alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä 405

32.3.15 Product Subclass 15: 1-Nitrogen-Functionalized 2-Phosphorus-
Functionalized Alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä 421

32.3.16 Product Subclass 16: 1,2-Bis(phosphorus-functionalized) Alkenes
B. List, C. Chandler, R. R. Torres, and A. Erkkilä 427

32.4 Product Class 4: Haloalkenes
A. Pollex .. 431

32.5 Product Class 5: (Organooxy)alkenes

32.5.1 Product Subclass 1: Enols
D. Trauner ... 533

32.5.2 Product Subclass 2: Enolates
D. Trauner ... 547

32.5.3 Product Subclass 3: Enol Ethers
V. Milata, S. Rádl, and S. Voltrová ... 589

32.5.4 Product Subclass 4: Ene—OX Compounds (X = O, S, Se, Te)
G. Sartori and R. Maggi .. 757

32.5.5 Product Subclass 5: Ene—ON Compounds
G. Sartori and R. Maggi .. 783

32.5.6 Product Subclass 6: Ene—OP Compounds
G. Sartori and R. Maggi .. 795
Table of Contents

Introduction
J. Mulzer

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.1</td>
<td>Product Class 1: 1,3-Bis(heteroatom-substituted) Allenes and Analogous Higher Cumulenes</td>
<td>13</td>
</tr>
<tr>
<td>32.1.1</td>
<td>Product Subclass 1: 1,3-Dihaloallenes</td>
<td>13</td>
</tr>
<tr>
<td>32.1.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>13</td>
</tr>
<tr>
<td>32.1.1.1.1</td>
<td>Method 1: Synthesis Using Alkylithium Reagents and Pyran-2-ones</td>
<td>13</td>
</tr>
<tr>
<td>32.1.2</td>
<td>Product Subclass 2: 1-Halo-3-(organooxy)allenes</td>
<td>15</td>
</tr>
<tr>
<td>32.1.3</td>
<td>Product Subclass 3: 1-Halo-3-(organochalcogeno)allenes</td>
<td>15</td>
</tr>
<tr>
<td>32.1.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>15</td>
</tr>
<tr>
<td>32.1.3.1.1</td>
<td>Method 1: Synthesis Using Sulfonoselenoate Reagents and Alkynes</td>
<td>15</td>
</tr>
<tr>
<td>32.1.4</td>
<td>Product Subclass 4: 1-Nitrogen-Functionalized 3-Haloallenes</td>
<td>16</td>
</tr>
<tr>
<td>32.1.5</td>
<td>Product Subclass 5: 1-Phosphorus-Functionalized 3-Haloallenes</td>
<td>17</td>
</tr>
<tr>
<td>32.1.6</td>
<td>Product Subclass 6: 1,3-Bis(organooxy)allenes</td>
<td>17</td>
</tr>
<tr>
<td>32.1.7</td>
<td>Product Subclass 7: 1-(Organochalcogeno)-3-(organooxy)allenes</td>
<td>17</td>
</tr>
<tr>
<td>32.1.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>17</td>
</tr>
<tr>
<td>32.1.7.1.1</td>
<td>Method 1: Synthesis Using Silyl Ketene Reagents and Alkynes</td>
<td>17</td>
</tr>
<tr>
<td>32.1.8</td>
<td>Product Subclass 8: 1-Nitrogen-Functionalized 3-(Organooxy)allenes</td>
<td>18</td>
</tr>
<tr>
<td>32.1.9</td>
<td>Product Subclass 9: 1-Phosphorus-Functionalized 3-(Organooxy)allenes</td>
<td>18</td>
</tr>
<tr>
<td>32.1.10</td>
<td>Product Subclass 10: 1,3-Bis(organochalcogeno)allenes</td>
<td>18</td>
</tr>
<tr>
<td>32.1.11</td>
<td>Product Subclass 11: 1-Nitrogen-Functionalized 3-(Organochalcogeno)-allenes</td>
<td>19</td>
</tr>
<tr>
<td>32.1.12</td>
<td>Product Subclass 12: 1-Phosphorus-Functionalized 3-(Organochalcogeno)-allenes</td>
<td>19</td>
</tr>
<tr>
<td>32.1.13</td>
<td>Product Subclass 13: 1,3-Bis(nitrogen-functionalized) Allenes</td>
<td>19</td>
</tr>
<tr>
<td>32.1.14</td>
<td>Product Subclass 14: 1-Nitrogen-Functionalized 3-Phosphorus-Functionalized Allenenes</td>
<td>19</td>
</tr>
<tr>
<td>32.1.15</td>
<td>Product Subclass 15: 1,3-Bis(phosphorus-functionalized) Allenes</td>
<td>19</td>
</tr>
<tr>
<td>32.1.16</td>
<td>Product Subclass 16: 1,0-Bis(heteroatom-functionalized) Cumulenes</td>
<td>20</td>
</tr>
</tbody>
</table>
Product Class 2: Monofunctionalized Allenes and Higher Cumulenes
A. S. K. Hashmi

Product Subclass 1: Haloallenes

1. Synthesis of Product Subclass 1
2. Method 1: Fluoroallenes by Fluoride Substitution with Organocuprates
3. Method 2: Chloroallenes by Isomerization of Propargylic Chlorides
4. Variation 1: Using a Copper(I)/Copper(0) Catalyst
5. Variation 2: Using Only a Copper(I) Catalyst
6. Method 3: Chloroallenes from Propargylic Alcohols and Thionyl Chloride
7. Method 4: Chloroallenes from Propargylic Alcohols and Hydrogen Chloride
8. Method 5: Flash-Vacuum Thermolysis of 1-Chlorocyclopropenes
9. Method 6: Chloroallenes from Benzylne and Propargyl Chloride
10. Method 7: Chloroallenes from Ketene Silyl Acetals
11. Method 8: Chloroallenes from Alkynes and Benzil
12. Method 9: Chloroallenes from Propargylic Alcohols and Titanium(IV) Chloride
13. Method 10: Bromoallenes by Alkynylogous Ring Opening of Oxiranes
14. Method 11: Bromoallenes by Copper-Mediated Nucleophilic Substitution of Propargylic Methanesulfonates
15. Method 12: Bromoallenes from Acid Chlorides
16. Method 13: Bromoallenes from Phosphonium Bromides
17. Method 14: Iodoallenes from Propargylic Alcohols
18. Variation 1: Activation of the Propargylic Alcohol by a Phosphonium Species
19. Variation 2: Using a Copper(I)/Copper(0) Catalyst

Product Subclass 2: (Organochalcogeno)allenes

1. Synthesis of Product Subclass 2
2. Method 1: Isomerization of Propargyl Ethers by Potassium tert-Butoxide/tert-Butyl Alcohol
3. Method 2: Isomerization of Propargyl Ethers by Potassium tert-Butoxide/Pentane
4. Method 3: Isomerization–Elimination of Propargyl Ethers by Potassium tert-Butoxide/Benzene
5. Method 4: Metatation of Alkoxyallenes and Addition to Aldehydes
7. Method 6: Wittig Alkenation of Chromium–Carbene Complexes
8. Method 7: Alkylation–Isomerization of Propargyl Sulfides
9. Method 8: Allenyl Sulfides and Selenides by the Wittig Route
10. Method 9: Allenyl Sulfides by a Three-Component Reaction
11. Method 10: Allenyl Sulfides by Palladium-Catalyzed Coupling