The completely revised third edition of this four-volume classic is fully updated and now includes such topics as self-organization and organocatalysis. It describes the most important reaction types, new methods and recent developments. The internationally renowned editors and a plethora of international authors (including Nobel laureate R. Noyori) guarantee high quality content throughout the book. A “must read” for everyone in academia and industry working in this field.

Edited by
B. Cornils, W. A. Herrmann, M. Beller, R. Paciello

Applied Homogeneous Catalysis with Organometallic Compounds
A Comprehensive Handbook in Four Volumes
Third Edition

Boy Cornils has worked at the Ruhrchemie AG in Oberhausen, Germany, where homogeneous catalysis started with the hydroformylation reaction found by Otto Roelen, and with the former Hoechst AG in Frankfurt, Germany. In both locations he was director of the research. He is editor of several bestselling titles.

Wolfgang A. Herrmann is president of the Technical University of Munich and has received several awards for his work in organometallic chemistry, like the Otto-Bayer Medal, the DFG Leibniz Award, the ACS Award in Organometallic Chemistry, Max Planck Research Award, the GDCh Wilhelm Klemm Award and many more. He has authored a plethora of publications and is the editor of numerous bestselling books.

Matthias Beller is director of the Leibniz-Institute for Catalysis and Professor for Catalysis at the University of Rostock. He has received several awards such as the Otto-Roelen Medal, the DFG Leibniz Award, the first European Prize for Sustainable Chemistry, the Emil Fischer Medal and the Wöhler Prize of the German Chemical Society and the Gay-Lussac-Alexander-von-Humboldt Prize.

Rocco Paciello is a research manager at BASF SE in Ludwigshafen, Germany. After experience as a research chemist and assistant plant manager, he became responsible for the homogeneous catalysis group at BASF and has led it for the last fifteen years. The group is focused on finding new technical applications of transition metal catalyzed homogeneous catalysis, such as hydroformylations, carbonylations and hydrogenations.
Edited by Boy Cornils, Wolfgang A. Herrmann, Matthias Beller, and Rocco Paciello

Applied Homogeneous Catalysis with Organometallic Compounds
Edited by Boy Cornils, Wolfgang A. Herrmann, Matthias Beller, and Rocco Paciello

Applied Homogeneous Catalysis with Organometallic Compounds

A Comprehensive Handbook in Four Volumes

Third Edition
Contents

List of Contributors XV
Preface to the Third Edition XXIX

Volume 1

1 Introduction 1
Wolfgang A. Herrmann and Boy Cornils
1.1 Historical Pathways 1
1.2 Topical Developments Since Year 2000 9
1.3 Organization of the Third Edition 11
1.4 Historical Glossary 13
References 18

Part A Applied Homogeneous Catalysis 23

2 Hydroformylation 25
2.1 General Aspects 25
Boy Cornils
2.2 Conventional Processes 26
2.3 Aqueous-Phase Process 71
Ernst Wiebus, Klaus Schmid, and Boy Cornils
References 78

3 Carbonylation 91
3.1 Carbonylation: Introduction and General Aspects 91
Matthias Beller
3.2 Carbonylation of Methanol and its Derivatives to Acetic
Acid and Acetic Anhydride 93
Bradley A. Steinhoff and Joseph R. Zoeller
3.3 Alkyne Carbonylation 118
David J. Cole-Hamilton, and Eite Drent
3.4 Aryl-X and Related Carbonylations 145
Matthias Beller
Contents

3.5 Transition Metal-Catalyzed Oxidative Carbonylations
- *Xiao-Feng Wu, Helfried Neumann, and Matthias Beller*
 - Page 149

3.6 Alternating Copolymerization with Carbon Monoxide
- *Shingo Ito and Kyoko Nozaki*
 - Page 156

References
- Page 178

4 Polymerization and Copolymerization
- Page 191
 - 4.1 General Aspects
 - *Klaus Beckerle and Jun Okuda*
 - Page 191
 - 4.2 Metallocene-Catalyzed Polyolefins
 - *Walter Kaminsky and Gerrit A. Luinstra*
 - Page 203
 - 4.3 Post- and Non-metallocenes for Olefin Insertion Polymerization
 - *Moritz C. Baier and Stefan Mecking*
 - Page 225
 - 4.4 Polymerization of 1,3-Butadiene with Organometallic Complexes-Based Catalysts
 - *Giovanni Ricci and Giuseppe Leone*
 - Page 248
 - 4.5 Polycarbonates
 - *Leslaw Mleczko, Aurel Wolf, and Alexandra Grosse Böwing*
 - Page 273

References
- Page 285

5 Oligomerization, Cyclooligomerization, Dimerization
- Page 307
 - 5.1 Selective Production of 1-Hexene and 1-Octene
 - *Uwe Rosenthal, Bernd H. Müller, Normen Peulecke, Stephan Peitz, Anina Wöhl, and Wolfgang Müller*
 - Page 307
 - 5.2 Dimerization and Selective Oligomerization – Selected Examples of Industrial Applications
 - *Hélène Olivier-Bourbigou and Lionel Magna*
 - Page 328
 - 5.3 Telomerization of 1,3-Butadiene
 - *Piet W.N.M. van Leeuwen and Mathieu J.-L. Tschan*
 - Page 343
 - 5.4 Cyclotrimerization Reactions of Alkynes
 - *Marko Hapke, Nico Weding, and Karolin Kral*
 - Page 375

Abbreviations
- Page 392

References
- Page 392

Volume 2

6 Cross Coupling Reactions
- Page 411
 - 6.1 Coupling Reactions: Introduction and General Aspects
 - *Matthias Beller*
 - Page 411
 - 6.2 Industrial Applications of Palladium-Catalyzed Coupling Reactions
 - *Alejandro Varela-Fernandez and Johannes G. de Vries*
 - Page 413
 - 6.3 Ligand-Enabled Palladium-Catalyzed C—N and C—O Bond Formations from Aryl Halides, Tosylates and Mesylates
 - *Shung Man Wong, Chau Ming So, and Fuk Yee Kwong*
 - Page 435

References
- Page 459
7 Oxidation 465
 7.1 General Aspects 465
 Joaquim Henrique Teles
 7.2 Aromatic Carboxylic Acids 469
 Walt Partenheimer
 7.3 Oxidation of Olefins to Carbonyl Compounds (Wacker Process) 488
 Reinhard Jira
 7.4 Radical Chain Oxidations 508
 Fabrizio Cavani and Giorgio Strukul
 7.5 Manganese and Iron Bleaching Catalysts 519
 Ronald Hage and Johannes W. de Boer
 7.6 Catalytic Decarbonylative and Decarboxylative Processes 524
 Lukas Gooßen and Patrizia Mamone
 7.7 Oxidation of Phenols 543
 Oxana A. Kholdeeva
References 550

8 Hydrosilylation and Related Reactions of Silicon Compounds 569
 Bogdan Marciniec, Hieronim Maciejewski, Cezary Pietraszuk, and Piotr Pawluć
 8.1 Introduction 569
 8.2 Hydrosilylation of Carbon–Carbon Multiple Bonds 571
 8.3 Chemo- and Enantioselective Hydrosilylation of Unsaturated Carbon–Heteroatom Bonds 592
 8.4 Silicometallics and Catalysis 598
References 605

9 Hydrogenation 621
 9.1 Industrial Application of Asymmetric Hydrogenation 621
 Hans Ulrich Blaser, Benoit Pugin, and Felix Spindler
 9.2 Hydrogenation of Esters 645
 Lionel A. Saudan
Abbreviations 681
References 682

Part B Recent Developments 691

Subpart 1: Catalysts 691

10 New Trends in Organometallic Catalysts 693
 10.1 Iron Catalysis 693
 Kathrin Junge, Gerrit Wienhöfer, and Matthias Beller
 10.2 Copper-Catalyzed Arylation of Nucleophiles: History, Renaissance and Scalable Reactions 744
 Anis Tili, Gwilherm Evano, and Marc Taillefer
 10.3 Rare Earth Metal Catalysts 764
 Rhett Kempe
Contents

10.4 Chiral Frustrated Lewis Pair Catalysts 773
 Christoph Malbertz and Jürgen Klankermayer
References 787

Volume 3

11 New Ligands 809
11.1 N-Heterocyclic Carbenes 809
 Rubén S. Ramón and Steven P. Nolan
11.2 Phosphorus Ligands in Homogeneous Catalysis 828
 Armin Börner and Ralf Jackstell
11.3 Host–Guest Relations and Self-Organization in Homogeneous Catalysis 846
 Frédéric Hapiot and Eric Monflier
11.4 Micellar Catalysis 863
 Michael Schwarze and Reinhard Schomäcker
11.5 Switchable Catalysis 877
 David E. Bergbreiter
11.6 Catalysis with Transition Metal Pincer Complexes 889
 Lukasz T. Pilarski and Kálmán J. Szabó
11.7 Biocatalysis 898
 Robert Kourist and Uwe T. Bornscheuer
References 922

Subpart 2: Methods 951

12 Computational Investigations into the Heck Type Reaction Mechanisms 953
 Cai-Hong Guo and Haijun Jiao
12.1 Introduction 953
12.2 Oxidative Addition 954
12.3 Regioselectivity 966
12.4 Stereoselectivity 973
12.5 Alternative Mechanism Involving a Pd(II/IV) Redox System 978
12.6 Concluding Remarks 979
References 980

13 Chemical Reaction Engineering Aspects of Homogeneously Catalyzed Processes 983
 Manfred Baerns and Peter Claus
13.1 Introduction 983
13.2 Kinetics in Homogeneous Catalysis 985
13.3 Aspects of Catalyst Recycling 995
13.4 Symbols 996
References 997
14 Supported Liquid Phase Catalysis 999
 Marco Haumann and Peter Wasserscheid
14.1 Introduction 999
14.2 Support Materials 1000
14.3 Thin Film Coating Materials 1003
14.4 Summary and Outlook 1061
 References 1062

15 Recent Advances in Surface Organometallic Chemistry 1069
 Christophe Copéret and Florent Héroguel
15.1 Introduction 1069
15.2 Strategy and Methods 1069
15.3 A Decade of Development of Single-Site Heterogeneous
 Catalysts 1073
15.4 New Directions 1076
15.5 Challenges and Perspectives 1080
 References 1081

16 High Throughput Screening of Homogeneous Catalysts:
 Selected Trends and Applications in Process Development 1085
 Rocco A. Paciello
16.1 Summary 1094
 References 1095

17 Homogeneous Photocatalysis with Organometallic Compounds 1097
 Norbert Hoffmann
17.1 Introduction 1097
17.2 Metal Carbonyl Catalyzed Reactions 1098
17.3 Copper (I) Catalyzed [2+2] Photocycloadditions
 of Alkenes 1106
17.4 Photochemical Electron Transfer Mediated Reactions 1108
17.5 Photochemically Supported C—H Activation with Organometal
 Compounds 1124
17.6 Conclusions 1128
 References 1129

18 Electrochemical Water Oxidation and Reduction Catalyzed
 by Organometallic Compounds 1135
 Mei Wang and Fei Li
18.1 Introduction 1135
18.2 Electrochemical Water Oxidation to O₂ Catalyzed by Organometallic
 Compounds 1136
18.3 Electrochemical Water Reduction to H₂ Catalyzed by Organometallic
 Compounds 1146
18.4 Concluding Remarks and Outlook 1187
 References 1188
19 Metal-Catalyzed Multicomponent Reactions 1195
Jeffrey S. Quesnel and Bruce A. Arndtsen
19.1 Introduction 1195
19.2 Multicomponent Carbonylation Reactions 1196
19.3 Multicomponent Cross-Coupling Reactions 1203
19.4 Metallacycles in Multicomponent Reactions 1210
19.5 Multicomponent Approaches to 1,3-Dipolar
 Cycloadditions 1215
19.6 Summary and Outlook 1217
 References 1217

Volume 4

20 Supercritical Fluids as Advanced Media for Reaction and Separation
 in Homogeneous Catalysis 1221
 Jędrzej Walkowiak, Giancarlo Franciò, and Walter Leitner
20.1 Introduction 1221
20.2 Organometallic Catalysis in Supercritical Fluids 1225
20.3 Organometallic Catalysis in CO₂-Expanded
 Liquid Phases 1235
20.4 Supercritical CO₂-Based Multiphase Systems for Continuous-Flow
 Homogeneous Catalysis 1239
20.5 Summary and Outlook 1253
 References 1253

Subpart 3: Special Reactions 1259

21 Carboxylation of Nitroarenes and Aromatic Amines 1261
 Marcus Harrer and Jörg Sundermeyer
21.1 Present Synthesis of Isocyanates via the Phosgene Route 1261
21.2 Alternative Carboxylation Strategies towards Carbonic Acid
 Derivatives 1262
21.3 Overview 1263
21.4 Reductive Carboxylation of Nitroarenes 1264
21.5 Redox Carboxylation of Nitroarenes and Aromatic Amines According
 to (21.4) and (21.5) 1274
21.6 Oxidative Carboxylation of Aromatic Amines According to (21.6)
 and (21.7) 1275
21.7 Summary 1280
 References 1281

22 Pauson–Khand Reaction 1287
 Takanori Shibata
22.1 Introduction 1287
22.2 Co-Catalyzed Reaction 1288
Contents

26.4 Hydroamination Catalysts Based on Alkaline-Earth Metals 1396
26.5 Late Transition-Metal Complexes as Homogeneous Hydroamination Catalysts 1397
26.6 Heterogeneous and Immobilized Hydroamination Catalysts 1408
26.7 Brønsted Acid Catalyzed Hydroamination of Alkenes and Alkynes 1410
26.8 Base-Catalyzed Hydroamination 1412
26.9 Conclusions 1415
Acknowledgments 1417
References 1417

27 Catalytic Amide Bond Forming Methods 1427
Benjamin N. Atkinson, A. Rosie Chhatwal, and Jonathan M.J. Williams
27.1 Amidation of Carboxylic Acids 1427
27.2 Transamidation 1431
27.3 Amidation of Esters 1437
27.4 Amidation of Aldehydes (Without Oxime Intermediates) 1440
27.5 Amidation of Alcohols 1443
27.6 Amidation of Nitriles 1445
27.7 Oxime/Oxime Intermediates to Amides 1449
27.8 Aminocarbonylations 1452
27.9 Miscellaneous Amidations 1456
27.10 Conclusion 1457
References 1458

28 Synthesis of Heterocycles by Pd-catalyzed and Pd-catalysis Initiated Multi-component Reactions 1463
Thomas J. J. Müller
28.1 Introduction 1463
28.2 MCR by Insertion of Allenes 1464
28.3 MCR by Insertion of Carbon Monoxide 1468
28.4 MCR by Insertion of Alkenes and Alkynes 1470
28.5 MCR by Initial Sonogashira Alkynylation 1473
28.6 MCR by Carbonylative Sonogashira Alkynylation 1477
28.7 MCR by Catalytic Enamine Generation and Arylation 1478
28.8 Conclusion 1479
List of Abbreviations 1480
Acknowledgments 1480
References 1480

29 Metal-Catalyzed Baeyer–Villiger Oxidations 1485
Giorgio Strukul and Alessandro Scarso
29.1 Introduction 1485
29.2 Oxidation of Cyclobutanones 1487
29.3 Oxidation of Other Ketones 1491
29.4 BV in Water 1497
29.5 Organic and Heterogeneous Catalysis 1498
29.6 Conclusions 1503
References 1504

30 Dihydroxylations of Olefins and Related Reactions 1509
Sebastian Schmidt and Bernd Plietker
30.1 Introduction 1509
30.2 Osmium 1509
30.3 Ruthenium 1515
30.4 Iron 1521
References 1522

31 Selective Alkane Oxidation 1525
Anna Company and Miquel Costas
31.1 Introduction 1525
31.2 Iron-Based Catalysts 1526
31.3 Manganese-Based Catalysts 1528
31.4 Chromium-Based Catalysts 1531
31.5 Vanadium-Based Catalysts 1532
31.6 Ruthenium-Based Catalysts 1533
31.7 Metalloporphyrins as Catalysts 1535
31.8 Conclusions 1538
References 1539

32 Catalytic Click Reactions 1541
Sanne Schoffelen and Morten Meldal
32.1 Introduction 1541
32.2 Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) 1542
32.3 Effect of Substrates and Environment on the CuAAC Reaction 1546
32.4 Ruthenium-Catalyzed Azide–Alkyne Cycloaddition (RuAAC) 1548
32.5 Other Types of Click Reactions 1550
References 1552

33 Sulfur in Catalysis 1557
Philippe Kalck
33.1 Introduction 1557
33.2 Sulfur as a Coordination Atom of the Ligand, or as Part of the Ligand 1560
33.3 The Substrate Contains a Sulfur Atom 1569
33.4 Formation of Carbon–Sulfur Bonds by Catalysis 1570
33.5 Bioinspired Catalyst Design 1572
33.6 Conclusion 1573
References 1574