New Prospects in Direct, Inverse and Control Problems for Evolution Equations
New Prospects in Direct, Inverse and Control Problems for Evolution Equations
More information about this series at
http://www.springer.com/series/10283
New Prospects in Direct, Inverse and Control Problems for Evolution Equations
During the preparation of this volume, Alfredo Lorenzi, one of the organizers of the meeting “Differential Equations, Inverse Problems and Control Theory”, passed away. We would like to dedicate this work to him. His death left an immeasurable emptiness for those who knew him as a student, professor, colleague or friend, or as a father or husband. Alfredo, we shall miss you immensely and we shall always remember you with your smile.
Alfredo Lorenzi (1944-2013)
Preface

The International Conference *Differential Equations, Inverse Problems and Control Theory* took place at the Palazzone in Cortona (Italy), from June 16 to 21, 2013. The conference, organized by Angelo Favini and Alfredo Lorenzi, was held in collaboration with the Mathematics Department of the University of Bologna and with INdAM (Istituto Nazionale di Alta Matematica). It was attended by about 40 mathematicians from universities in a variety of countries, including France, Germany, Israel, Italy, Japan, Romania, and the USA.

As is well known, applied sciences consider situations in which one observes the evolution over time of a given system. The related models can be formulated in terms of evolution equations, mathematical structures in which the dependence on time plays an essential role. Such equations have been studied intensively in theoretical research and are the source of an enormous number of applications.

A typical class of problems that has been investigated over the years concerns the well-posedness of an evolution equation with the given initial and boundary conditions, possibly with some degeneration (the so-called DIRECT problems). However, in several situations, initial conditions are difficult to determine exactly, while measurements of the solution at different stages of its evolution might be available. Many techniques have been developed to recover, from such pieces of information, important parameters governing the evolution, such as forcing terms or diffusion coefficients. This avenue of investigation is usually referred to as INVERSE problems.

A third way to study evolution equations is to try to influence the evolution of a given system through various kinds of external action called CONTROL. Of course, control problems may vary in nature, ranging from a given system to a desired configuration in finite or infinite time, to trying to optimize a performance criterion.

Although for some time direct, inverse and control problems for evolution equations were viewed as almost independent issues, in recent years it has become clear that they can profit enormously from a strong interaction with each other. For instance, a priori estimates for solutions of partial differential equations that were originally developed to study unique continuation problems, i.e. Carleman’s
estimates, have been proved to be extremely useful in studying exact controllability and inverse problems.

For these reasons, one of the main cultural goals of our initiative was to bring together experts in the above fields to speed up interaction and stimulate the development of new ideas. To achieve this aim, several conferences were organized, the most recent being the meeting *Differential Equations, Inverse Problems and Control Theory*.

This volume assembles the contributions of most of the speakers who participated in the meeting. It provides an overview that reflects the richness and vitality of the subject. All the contributions underwent peer review, in compliance with the standard procedure for the Springer INdAM Collection.

Bologna, Italy
Bari, Italy

Angelo Favini
Genni Fragnelli
Rosa Maria Mininni

June 2014
We express our heartfelt thanks to the following sponsors: the Mathematics Department of the University of Bologna and Istituto Nazionale di Alta Matematica. We would particularly like to thank Scuola Normale Superiore di Pisa for the exceptional hospitality offered in the Palazzone in Cortona. Last but not least, we are sincerely grateful to all the authors for their efforts in writing excellent papers and to the editors of the series for their interest in this publication.
Contents

1 Exponential Stability of the Wave Equation with Memory and Time Delay ... 1
Fatiha Alabau-Boussouira, Serge Nicaise, and Cristina Pignotti

2 Existence of Global Weak Solutions to a Generalized Hyperelastic-Rod Wave Equation with Source 23
Fabio Ancona and Giuseppe Maria Coclite

3 Exponential Decay Properties of a Mathematical Model for a Certain Fluid-Structure Interaction 49
George Avalos and Francesca Bucci

4 Inverse Coefficient Problem for Grushin-Type Parabolic Operators ... 79
Karine Beauchard and Piermarco Cannarsa

5 Determining the Scalar Potential in a Periodic Quantum Waveguide from the DN Map .. 93
Mourad Choulli, Yavar Kian, and Eric Soccorsi

6 A General Approach to Identification Problems 107
Angelo Favini, Alfredo Lorenzi, and Hiroki Tanabe

7 A Control Approach for an Identification Problem Associated to a Strongly Degenerate Parabolic System with Interior Degeneracy ... 121
Genni Fragnelli, Gabriela Marinoschi, Rosa Maria Mininni, and Silvia Romanelli

8 On the Nature of the Instability of Radial Power Equilibria of a Semilinear Parabolic Equation 141
Jerome A. Goldstein and Junqiang Han
Abstract Elliptic Problems Depending on a Parameter and Parabolic Problems with Dynamic Boundary Conditions
Davide Guidetti
Increasing Stability of the Continuation for General Elliptic Equations of Second Order
Victor Isakov
Simultaneous Observability of Plates
Vilmos Komornik and Paola Loreti
Kernel Estimates for Nonautonomous Kolmogorov Equations with Potential Term
Markus Kunze, Luca Lorenzi, and Abdelaziz Rhandi
On Some Inverse Problems of the Calculus of Variations for Second Order Differential Equations with Deviating Arguments and Partial Derivatives
Galina Kurina
Intrinsic Decay Rate Estimates for Semilinear Abstract Second Order Equations with Memory
Irena Lasiecka and Xiaojun Wang
Inverse Problem for a Linearized Jordan–Moore–Gibson–Thompson Equation
Shitao Liu and Roberto Triggiani
Solutions of Stochastic Systems Generalized Over Temporal and Spatial Variables
Irina V. Melnikova, Uliana A. Alekseeva, and Vadim A. Bovkun
Recovering the Reaction Coefficient in a Linear Parabolic Equation
Gianluca Mola
L^p-Theory for Schrödinger Operators Perturbed by Singular Drift Terms
Noboru Okazawa and Motohiro Sobajima
Semilinear Delay Evolution Equations with Nonlocal Initial Conditions
Ioan I. Vrabie
Elliptic Differential-Operator Problems with the Spectral Parameter in Both the Equation and Boundary Conditions and the Corresponding Abstract Parabolic Initial Boundary Value Problems
Yakov Yakubov
Chapter 1
Exponential Stability of the Wave Equation with Memory and Time Delay

Fatiha Alabau-Boussouira, Serge Nicaise, and Cristina Pignotti

Abstract We study the asymptotic behaviour of the wave equation with viscoelastic damping in presence of a time-delayed damping. We prove exponential stability if the amplitude of the time delay term is small enough.

1.1 Introduction

This paper is devoted to the stability analysis of a viscoelastic model. In particular, we consider a model combining viscoelastic damping and time-delayed damping. We prove an exponential stability result provided that the amplitude of time-delayed damping is small enough. Moreover, we give a precise estimate on this smallness condition. This shows that even if delay effects usually generate instability (see e.g. [6, 7, 14, 20]), the damping due to viscoelasticity can counterbalance them.

F. Alabau-Boussouira
LMAM, Université de Lorraine and CNRS (UMR 7122), 57045 Metz Cedex 1, France
e-mail: fatiha.alabau@univ-lorraine.fr

S. Nicaise
LAMA V, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, Université de Valenciennes et du Hainaut Cambrésis, 59313 Valenciennes Cedex 9, France
e-mail: serge.nicaise@univ-valenciennes.fr

C. Pignotti
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università di L’Aquila, 67010 L’Aquila, Italy
e-mail: pignotti@univaq.it

© Springer International Publishing Switzerland 2014
A. Favini et al. (eds.), New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Springer INdAM Series 10,
DOI 10.1007/978-3-319-11406-4_1