ADDITIVES IN POLYMERS

Industrial Analysis and Applications
Contents

FOREWORD ... ix

PREFACE .. xi

ABOUT THE AUTHOR ... xiii

ACKNOWLEDGEMENTS ... xv

CHAPTER 1 Introduction .. 1

1.1 Additives ... 2

1.1.1 Additive functionality 3

1.2 Plastics formulations .. 5

1.2.1 Supply forms ... 7

1.2.2 Additive delivery .. 9

1.3 Economic impact of polymer additives 9

1.4 Analysis of plastics .. 11

1.4.1 Regulations and standardisation 15

1.4.2 Prior art .. 17

1.4.3 Databases ... 19

1.4.4 Scope ... 20

1.4.5 Chapter overview 22

1.5 Bibliography ... 23

1.5.1 Plastics additives .. 23

1.5.2 Processing technologies 23

1.5.3 Instrumental analysis 23

1.5.4 Polymer analysis ... 24

1.5.5 Polymer/additive analysis 24

1.6 References ... 24

CHAPTER 2 Deformulation Principles 29

2.1 Polymer identification 30

2.2 Additive analysis of rubbers: ‘Best Practice’ 32

2.3 Polymer extract analysis 42

2.4 *In situ* polymer/additive analysis 46

2.5 Class-specific polymer/additive analysis 47

2.6 Bibliography ... 48

2.6.1 Polymer identification 48

CHAPTER 3 Sample Preparation Perspectives 51

3.1 Solvents ... 54

3.1.1 Polymer solubility criteria 55

3.1.2 Solubility parameters 55

3.1.3 Polymer solutions 56

3.2 Extraction strategy ... 57

3.3 Conventional extraction technologies 59

3.3.1 Liquid–liquid extraction 60

3.3.2 Liquid–solid extraction 60

3.3.3 Classical solvent extractions of additives from polymers .. 61

3.3.4 Sonication .. 75

3.4 High-pressure solvent extraction methods 81

3.4.1 Supercritical fluid technology 81

3.4.2 Analytical SFE ... 85

3.4.3 Subcritical water extraction 100

3.4.4 Microwave technology 101

3.4.5 Microwave-assisted extractions 104

3.4.6 Pressurised fluid extraction 117

3.5 Sorbent extraction .. 123

3.5.1 Solid-phase extraction 124

3.5.2 Solid-phase microextraction 129

3.5.3 Stir bar sorptive extraction 133

3.6 Methodological comparison of extraction methods 134

3.6.1 Experimental comparisons 136

3.6.2 Extraction selectivity 138

3.6.3 ‘Nonextractable’ additive analysis 140

3.7 Polymer/additive dissolution methods 146

3.8 Hydrolysis ... 152

3.9 Bibliography ... 155

3.9.1 Sampling and sample preparation 155

3.9.2 Solvents/solubility 155

3.9.3 Extraction methods 156

3.10 References .. 156
Chapter 4 Separation Techniques

4.1 Analytical detectors 177
4.2 Gas chromatography 181
 4.2.1 High-temperature gas chromatography 200
 4.2.2 Headspace gas chromatography 202
4.3 Supercritical fluid chromatography 205
4.4 Liquid chromatography techniques 217
 4.4.1 Planar chromatographies 218
 4.4.2 Column chromatographies 230
4.5 Capillary electrophoretic techniques 273
4.6 Bibliography 278
 4.6.1 General texts 278
 4.6.2 Detectors 279
 4.6.3 Gas chromatography 279
 4.6.4 Supercritical fluid chromatography 279
 4.6.5 Thin-layer chromatography 279
 4.6.6 Liquid chromatography 280
 4.6.7 Size-exclusion chromatography .. 280
 4.6.8 Ion chromatography 280
 4.6.9 Capillary electrophoretic techniques 280
4.7 References 281

Chapter 5 Polymer/Additive Analysis:
The Spectroscopic Alternative

5.1 Ultraviolet/visible spectrophotometry 302
5.2 Infrared spectroscopy 311
5.3 Luminescence spectroscopy 318
5.4 High-resolution nuclear magnetic resonance spectroscopy 323
 5.4.1 Multidimensional NMR spectroscopy 336
5.5 Bibliography 342
 5.5.1 General spectroscopy 342
 5.5.2 Ultraviolet/visible spectrophotometry 342
 5.5.3 Infrared spectroscopy 342
 5.5.4 Luminescence spectroscopy 342
 5.5.5 Nuclear magnetic resonance spectroscopy 342
5.6 References 342

Chapter 6 Organic Mass-Spectrometric Methods

6.1 Basic instrumentation 351
 6.1.1 Inlet systems 352

Chapter 7 Multihyphenation and Multidimensionality in Polymer/Additive Analysis

7.1 Precolumn hyphenation 428
 7.1.1 Chromatographic sampling methods 432
7.2 Coupled sample preparation – spectroscopy/spectrometry 449
7.3 Postcolumn hyphenation 452
 7.3.1 (Multi)hyphenated GC techniques 456
 7.3.2 (Multi)hyphenated SFC techniques 475
 7.3.3 (Multi)hyphenated HPLC techniques 489
 7.3.4 Hyphenated SEC techniques 527
 7.3.5 Hyphenated TLC techniques 530
 7.3.6 Hyphenated CE techniques 543
7.4 Multidimensional chromatography 545
 7.4.1 Multidimensional gas chromatography 548
 7.4.2 Multidimensional supercritical fluid chromatography 550
 7.4.3 Multidimensional liquid chromatography 550
 7.4.4 Multidimensional thin-layer chromatography 558
7.5 Multidimensional spectroscopy 560
7.6 Bibliography .. 562
 7.6.1 General ... 562
 7.6.2 Multihyphenation and multidimensionality 563
 7.6.3 Precolumn hyphenation 563
 7.6.4 Postcolumn hyphenation 563
 7.6.5 Multidimensional chromatography 563
 7.6.6 Multidimensional spectroscopy 563
7.7 References .. 564

Chapter 8 Inorganic and Element Analytical Methods 585

8.1 Element analytical protocols 587
 8.1.1 Element analytical pretreatment protocols 588
 8.1.2 Elemental analysis methods 589
8.2 Sample destruction for classical elemental analysis 591
 8.2.1 Combustion analysis ... 593
 8.2.2 Wet matrix digestion ... 597
 8.2.3 Fusion methods .. 604
8.3 Analytical atomic spectrometry 605
 8.3.1 Atomic absorption spectrometry 608
 8.3.2 Atomic emission spectrometry 613
 8.3.3 Atomic fluorescence spectrometry 624
 8.3.4 Direct spectrometric analysis of solid samples 625
8.4 X-ray spectrometry .. 627
 8.4.1 X-ray fluorescence spectrometry 628
 8.4.2 Particle-induced X-ray emission spectrometry 639
 8.4.3 X-ray absorption spectrometry 642
 8.4.4 X-ray diffraction ... 644
8.5 Inorganic mass spectrometry 648
 8.5.1 Spark-source mass spectrometry 650
 8.5.2 Glow-discharge mass spectrometry 651
 8.5.3 Inductively coupled plasma–mass spectrometry 652
 8.5.4 Isotope dilution mass spectrometry 659

Chapter 9 Direct Methods of Deformulation of Polymer/Additive Dissolutions 691

9.1 Chromatographic methods .. 692
 9.1.1 Size-exclusion chromatography 693
9.2 Spectroscopic techniques ... 696
 9.2.1 Nuclear magnetic resonance spectroscopy 696
9.3 Mass-spectrometric methods 701
 9.3.1 MALDI-MS analysis of polymer/additive dissolutions ... 702
9.4 References .. 709

Chapter 10 A Vision for the Future 711

10.1 Trends in polymer technology 712
10.2 Trends in additive technology 715
 10.2.1 Advances in additives 717
10.3 Environmental, legislative and regulatory constraints 723
 10.3.1 Trends in manufacturing, processing and formulation 724
10.4 Analytical consequences .. 725
 10.4.1 General analytical tool development 728
 10.4.2 Future trends in polymer/additive analysis 729
 10.4.3 Analytical challenges 739
 10.4.4 Polymer/additive analysis at the extremes 740
Foreword

Loss of knowledge is an acute threat to companies. The crucial question is how existing knowledge and new technologies can be harnessed as a corporate resource. A major problem facing industry is retaining knowledge within the company, in particular in times of acceleration of innovation. Moreover, in industrial research there is an unmistakable shift from generating knowledge and solving problems by experimental work towards detecting, selecting and absorbing knowledge from the external knowledge infrastructure and adapting it to specific situations. This book contributes a great deal to preserving and critically evaluating knowledge in the field of the analytics of polymer additives.

Additives play a leading role in the success of commercial plastics, elastomers, rubbers, coatings and adhesives. Without additives, many polymers would simply be of limited use. Although polymer additive analysis claims a history of use spanning at least half a century it is, nevertheless, still a continuously evolving research area with new and modified procedures related to increasingly sophisticated products. In many ways, this has led to a plethora of traditional and new chemical, physico-chemical and physical techniques and applications that are confusing to the specialist and beginner alike. An overview of developments across all areas of polymer additive analysis is lacking and a unified approach should therefore be of considerable assistance. This work shows that industrially relevant polymer additive analysis has developed into a very broad and complex field, in retrospect at the limit for one single author and problem holder. Also, despite the many advances direct polymer additive analysis has not yet displaced conventional wet chemical routes.

In this respect, current state-of-the-art ends up in a draw. This book makes a substantial contribution to the current literature on the analytics of polymer additives, follows up an earlier industrial tradition and lays a foundation for the future. It will be of great value to a broad readership comprising industrial and academic (analytical) chemists, polymer scientists and physicists, technologists and engineers, and other professionals involved in R&D, production, use and re-use of polymers and additives in all areas of application, including manufacturers, formulators, compounders, end users, government legislators and their staff, forensic scientists, etc.

With a rapidly developing field as this one, this book can only be considered as a work in progress. Hopefully, this monograph will help users to avoid reinventing the classical analytical wheel, and abandon obsolete, old practices, to redirect their efforts eventually towards more appropriate, though sometimes complicated equipment, to become sufficiently proficient to solve real-life analytical problems efficiently and with confidence, or even to devise innovative and challenging new directions. Certainly, this book will save significant time and effort for those analysts faced with cracking complex polymer additive cocktails. As nothing holds true for ever, it will be most appropriate to review the field again within the next decade.

Jos Put
Vice President R&D Materials
DSM Research
Geleen
The Netherlands
Whenever textbooks on polymer chemistry deal with polymer analytical aspects, macromolecular characterisation is usually overemphasised giving the unsuspecting reader the incorrect impression that polymers and formulated polymeric materials are one and the same thing. This treatise, which attempts to remedy such an oversight, is concerned with the characterisation of additives embedded in a broad variety of polymeric matrices. The topic is particularly relevant in view of the impressive growth in the use of synthetic polymeric materials and significant analytical advances in terms of sample preparation, chromatography, detection systems, hyphenation and computation in the last two decades. In every field of science and engineering, it is convenient to have at one’s disposal an up-to-date handbook to provide specialists with a broad collection of technical details about the individual elements of the field. This has now come true for polymer/additive analysis.

The purpose of this monograph, the first to be dedicated exclusively to the analytics of additives in polymers, is to evaluate critically the extensive problem-solving experience in the polymer industry. Although this book is not intended to be a treatise on modern analytical tools in general or on polymer analysis en large, an outline of the principles and characteristics of relevant instrumental techniques (without hands-on details) was deemed necessary to clarify the current state-of-the-art of the analysis of additives in polymers and to accustom the reader to the unavoidable professional nomenclature. The book, which provides an in-depth overview of additive analysis by focusing on a wide array of applications in R&D, production, quality control and technical service, reflects the recent explosive development of the field. Rather than being a compendium, cookery book or laboratory manual for qualitative and/or quantitative analysis of specific additives in a variety of commercial polymers, with no limits to impractical academic exoticism (analysis for its own sake), the book focuses on the fundamental characteristics of the arsenal of techniques utilised industrially in direct relation to application in real-life polymer/additive analysis. The analyst requires expert knowledge, i.e. understanding of the strengths, weaknesses and limits of application of each technique and how they relate to practical problems. Therefore, the chapters are replete with selected and more common applications illustrating why particular additives are analysed by a specific method. By understanding the underlying principles, the mystery of the problem disappears. Expertise, of course, requires more than understanding of the principles alone. Consequently this book does not serve to become overnight expert in the area of polymer/additive analysis. Rather, it helps the emerging generation of polymer analysts to obtain a rapid grasp of the material in minimal time but is no substitute for personal experience.

Additives in Polymers: Industrial Analysis and Applications fulfils a need and provides information not currently available from another single literature source. This book is different from other books on polymer analysis in a number of ways. Instrumental methods are categorised according to general deformulation principles; there is more emphasis on effective problem solving and promoting understanding than on factual information or instrumental capabilities without focus on any specific analyte or polymer class. The tools of the trade are introduced when appropriate in the deformulation strategy, not on the basis of their general properties only. In particular, the author has tried to emphasise the importance of employing rational methods to laboratory, in situ and on-line polymer/additive analysis. The present text is an appraisal of the literature and methodology currently available (tool description), from which the inexperienced ‘deformulator’ can select those means necessary to tackle his own problem and finally write his own recipe and clear procedures in compliance with local instrumental possibilities. The critical evaluation of methods also indicates what still needs to be done. From an industry perspective, it is clear that above all there is a need to improve the quantitative aspects of the methods.
Although wide-ranging, the author does not claim to present a collection of 10 comprehensive reviews. Instead, illustrative examples, drawn from closely related fields (polymers, rubbers, coatings, adhesives), are given to outline the ranges of applicability. The value of the book stays in the applications. No book is perfect and no doubt equally deserving papers have been omitted and some undeserving ones have been included. However, with the number of techniques much greater than originally planned the text should be kept within reasonable bounds. The reader may keep in mind the lines

For what there was none cared a jot.

But all were wroth with what was not.

Theory and practice of polymer/additive analysis are not a regular part of analytical education, and usually require on-the-job training. The intention in writing this text was to appeal to as wide an audience as possible. Using an instructional approach, this reference book helps orienting chemists and technicians with little or no background in polymer/additive analysis who would like to gain rapidly a solid understanding of its fundamentals and industrial practice. Seasoned analysts of polymer formulations may use the text to quickly understand terms and techniques which fall outside of their immediate experience. The author has attempted to bring together many recent developments in the field in order to provide the reader with valuable insight into current trends and thinking. Finally, this book can also serve as a modern textbook for advanced undergraduate and graduate courses in many disciplines including analytical chemistry, polymer chemistry and industrial chemistry.

In planning this book the author has chosen a monograph in decathlon fashion. This allows critical comparisons between methods and has the advantage of a unified structure. The disadvantage is that no individual can have specialist knowledge in all fields equal to that of the sum of the experts. To overcome this drawback extensive peer review has been built in. For each individual technique more excellent textbooks are available, properly referenced, albeit with less focus on the analysis of additives in polymers. However, the steep growth curve during the past two decades has made reporting on this subject an almost elusive target. Each chapter of this monograph is essentially self-contained. The reader can consult any subchapter individually. Together they should give a good grounding of the basic tools for dealing with the subject matter.

The reader is well advised to read the two introductory chapters first, which define the analytical problem area and general deformation schemes. The next chapters tackle polymer/additive deformation strategically in an ever-increasing order of sophistication in analytical ingenuity. Conventional, indirect, polymer/additive analysis methods, mainly involving wet chemistry routes, are described in Chapters 3 to 9. The book is concluded with prospects in Chapter 10. Extensive appendices describe additive classes; a glossary of symbols, and databases. To facilitate rapid consultation the text has been provided with eye-catchers. Each chapter concludes with up-to-date references to the primary literature (no patent literature). Contributions from many of the top industrial research laboratories throughout the world are included in this book, which represents the most extensive compilation of polymer/additive analysis ever. Once more it comes true that most research is being carried out beyond one’s own R&D establishment.

The author has not tried to include a complete _ab-initio_ literature search in any particular area. The majority of references in the text are from recent publications (1980–2003). This is not because excellent older references are no longer relevant. Rather, these are frequently no longer used because: (i) more recent work is a fine-tuned extension of prior work; (ii) the ‘classic’ texts list extensive work up to 1980; and (iii) older methods are frequently based on inferior or obsolete technology and thus direct transfer of methods may be difficult or impossible. Readers familiar with the ‘classics’ in the field will find that almost everything has changed considerably.

As most (industrial) practitioners have access to rapid library search facilities, it is recommended that a literature search on the analysis of a specific additive in a given polymer be carried out at the time, in order to generate the most recent references. Consequently, the author does not apologise for omitting references to specific analyses. However, every effort has been made to keep the book up-to-date with the latest methodological developments. Each chapter comprises a critical list of recommended general reading (books, reviews) for those who want to explore the subjects in greater depth.

This book should convince even the most hardened of the ‘doubting Thomases’ that polymer/additive analysis has gone a long way. With a developing field such as this one, any report represents only work in progress and is not the last word.

Geleen
December 2003
About the Author

Jan C.J. Bart (PhD Structural Chemistry, University of Amsterdam) is a senior scientist with broad interest in materials characterisation, heterogeneous catalysis and product development who spent an industrial carrier in R&D with Monsanto, Montedison and DSM Research in various countries. The author has held several teaching assignments and researched extensively in both academic and industrial areas; he authored over 250 scientific papers, including chapters in books. Dr Bart has acted as a Ramsay Memorial Fellow at the Universities of Leeds (Colour Chemistry) and Oxford (Material Science), a visiting scientist at Institut de Recherches sur la Catalyse (CNRS, Villeurbanne), and a Meyerhoff Visiting Professor at WIS (Rehovoth), and held an Invited Professorship at USTC (Hefei). He is currently a Full Professor of Industrial Chemistry at the University of Messina.

He is also a member of the Royal Society of Chemistry, Royal Dutch Chemical Society, Society of Plastic Engineers and The Institute of Materials.