Surgical Innovations in Glaucoma
Surgical Innovations in Glaucoma
Surgical Innovations in Glaucoma
Surgical Innovations
in Glaucoma
Trabeculectomy has been a gold standard for almost 100 years. We believe that many of the emerging technologies can offer significant improvements for our patients. In this volume, we seek to present the most significant new technologies offering promise for glaucoma surgery; some are still investigational, and some are already on the market. These alternatives raise a host of issues which we seek to address throughout the book. We are confident that many of the technologies in this volume will prevail and go on to become mainstream over time. In many instances, these are the first reviews of new devices. Authors have been asked to provide videos, and we provide links to those videos. We will include videos which will really work at the “how to” level for those interested in doing these procedures.

The new approaches described herein use laser, ultrasound, and incisional surgery. In many instances, the new technologies use fibers, stents, or tubes in Schlemm’s canal, the suprachoroidal space, or the subconjunctival space. At the outset, we have provided a discussion of anatomy of these spaces, as well as a discussion of the intellectual property issues and regulatory issues pertinent to glaucoma. Regulatory issues for approval of the devices are rapidly changing, and we realize, as we hope the reader will, the limitations of discussing them in a book, which de facto, in this rapidly changing environment, means some elements are subject to going out-of-date.

In the middle of the book, we include a cross section of the therapeutic targets which include the subconjunctival space with improved forms of filtration, Schlemm’s canal and its collector channels, the suprachoroidal space, and the ciliary body. These areas are treated with a variety of modalities, each with its own potential pitfalls. A uniform goal for all the procedures is for them to be routine and efficiently performed. Glaucoma is a worldwide problem, and the best and most successful procedures will be those which can succeed with a variety of skill levels in a variety of environments, including third-world settings.

All procedures need to be evaluated while thinking about the risk/reward/effort balance. Risk must always be balanced against the natural history of the disease in glaucoma, as well as the type of glaucoma. Even open-angle glaucoma is really a group of diseases as proven by the genes which have been discovered. Often, glaucoma surgeons get trapped in a rut of doing the most familiar procedure; we need to customize procedures to the life of the patient taking into account expectations, progression, and the surgical risks.

A lot of the things in this book are going to be used outside of their approved use(s) in the USA. Cost and regulatory issues remain concerns with these new procedures. Data needs to constantly be reevaluated keeping in mind our responsibility to do the best that we can for the patient. In some instances, the best available data may suggest “off-label” use which is permitted in the USA when it is clearly in the best interest of the patient. However, going off-label with any drug or device must always be well documented so that the patient and the patient’s family have a clear understanding of the reasons for going off-label. As of our December 2013 publication date, off-label use can be discussed in the context of continuing medical education lectures but not in promotional discussions of products. The legal landscape of off-label discussions may be changing with the current finding (subject to reversal) in a federal court that off-label discussions may be constitutionally protected free speech in the USA. Transparency
through candid and accurate discussions with patients of potential surgical procedures is an important part of the implementation of these new devices.

These new techniques throw into question long-standing assumptions which – in light of new technologies – need to be challenged. We have both often taught our children to question authority (often, but not always, with good results). Phacoemulsification and the development of the posterior chamber lens are good examples. These hallmark developments in ophthalmology were not well received at inception. It was only with time that they were accepted, particularly by the ophthalmic academic community. Don’t forget that phacoemulsification was initially perceived to be almost impossibly difficult to do. Yet, today, it is practically the standard of care and complications are rare. So it will be with some of the procedures outlined in this book.

We thank Rebekah Amos and Daniel Dominguez for their help in assembling this book. We thank all of the chapter authors, some of whom had to put up with all sorts of questions and harassment; they were very kind to put up with us. We thank our families for putting up with us (for JRS that means Griff, Wes, Laura, Andrew, and Lily, and for IKA that means Ruby, Yusuf, Aadam, and Issa).

This book is not comprehensive. At the time we are writing this, we are aware of a number of very new endeavors to surgically treat glaucoma that are not yet ready to be discussed in a volume such as this. Some will undoubtedly find their way “onto the radar” in the very near future.

We thank you who have purchased this book. We are both extremely interested in your feedback on this volume and hope that when you see us at glaucoma meetings you won’t hesitate to visit with us about what we could have done better or worse so that we can improve in the future.

Portland, OR, USA
John R. Samples, MD
Toronto, ON, Canada
Iqbal Ike K. Ahmed, MD, FRCSC
Contents

Part I Considerations in Device Development

1 Schlemm’s Canal and Collector Channels as Therapeutic Targets 3
 Haiyan Gong and Andrew Francis

2 Intraoperative Assessment of the Conventional Collector Outflow System as Therapeutic Target. ... 27
 Ronald Leigh Fellman

3 Suprachoroidal Space as a Therapeutic Target .. 33
 Tsontcho Ianchulev

4 Ciliary Body as a Therapeutic Target .. 45
 Jeffrey A. Kammer

5 Clinical Trials for IOP-Lowering Devices to Support an FDA Premarket Submission. ... 61
 Judy F. Gordon and Robert L. Kramm

 J. Wesley Samples and Gabrielle LaHatte

Part II Laser Technologies

7 New Laser Technologies ... 77
 Giorgio Dorin

8 Excimer Laser Trabeculostomy (ELT): An Effective MIGS Procedure for Open-Angle Glaucoma ... 85
 Michael S. Berlin, Marc Töteberg-Harms, Edward Kim, Iris Vuong, and Ulrich Giers

9 Laser Therapies: Cyclodestructive Procedures .. 97
 Toshimitsu Kasuga, Guofu Huang, and Shan C. Lin

10 CO₂ Laser-Assisted Deep Sclerectomy .. 103
 Alon Skaat and Shlomo Melamed

Part III Ultrasound Technologies

11 Ultrasonic Circular Cyclocoagulation ... 113
 Florent Aptel and Philippe Denis

12 Therapeutic Ultrasound for Glaucoma (TUG) 129
 Donald Schwartz
Part IV Internal Outflow Enhancement

13 The iStent MIGS Family: iStent®, iStent Inject®, and iStent Supra®
 Richard A. Hill, David Haffner, and Lilit Voskanyan
 147

14 Canaloplasty
 Toby Yu Bong Chan and Iqbal Ike K. Ahmed
 157

15 The Hydrus Micro-stent
 Shakeel Shareef, Antonio Fea, and Iqbal Ike K. Ahmed
 171

16 Minimally Invasive Glaucoma Surgery: Trabeculectomy Ab Interno
 Kevin Kaplowitz and Nils A. Loewen
 175

Part V External Outflow Enhancement

17 XEN Gel Stent: The Solution Designed by AqueSys®
 Vanessa I. Vera and Christopher Horvath
 189

18 Glaucoma Surgery with the Ex-Press Glaucoma Shunt
 Lindsay A. McGrath, Graham A. Lee, and Ivan Goldberg
 199

19 Molteno Developments in Traditional Outflow Implants
 Jeffrey Freedman
 209

20 Ahmed Glaucoma Valve Model M4
 Peter A. Netland
 223

Part VI Suprachoroidal Outflow Devices

21 The CyPass Suprachoroidal Micro-Stent
 Tsontcho Ianchulev
 229

22 STARflo™: A Suprachoroidal Drainage Implant Made
 from STAR® Biomaterial
 Sayeh Pourjavan, Nathalie J.M. Collignon, Veva De Groot,
 Rich A. Eiferman, Andrew J. Marshall, and Cecile J. Roy
 235

23 SOLX Suprachoroidal Shunt
 Parul Ichhpujani and Marlene R. Moster
 253

Part VII Cataract Surgery

24 Cataract Surgery: The “New” Glaucoma Procedure?
 Steven L. Mansberger
 259

25 Lens Extraction for Angle-Closure Glaucoma
 Diamond Y. Tam
 263

Part VIII Future Developments

26 Adopting New Surgical Methods: How I Do It and How I Choose:
 Going with the Flow
 E. Randy Craven
 277

27 Biomarkers to Predict Glaucoma Surgical Success
 Paul A. Knepper, Algis Grybauskas, Paulius V. Kuprys, Kevin Skuran,
 and John R. Samples
 287

Index
 299
Contributors

Iqbal Ike K. Ahmed, MD, FRCSC Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada

Florent Aptel, MD, PhD Department of Ophthalmology, University Hospital of Grenoble, Grenoble, France

Michael S. Berlin, MD, MS Glaucoma Institute of Beverly Hills, Jules Stein Eye Institute, UCLA, Los Angeles, CA, USA

Toby Yiu Bong Chan, MD, FRCSC Division of Ophthalmology, Department of Surgery, McMaster University, Waterloo Regional Campus, Kitchener, ON, Canada

Nathalie J.M. Collignon, MD, PhD Division of Neuro-Ophthalmology and Glaucoma, Department of Ophthalmology, University Hospital of Liège, Liège, Belgium

E. Randy Craven, MD Division of Glaucoma, Department of Ophthalmology, Wilmer Eye Institute at Johns Hopkins University, King Khaled Eye Specialist Hospital, Baltimore, MD, USA

Philippe Denis, MD, PhD Department of Ophthalmology, University Hospital of Lyon, Hôpital de la Croix-Rousse, Lyon, France

Giorgio Dorin Clinical Applications Development, IRIDEX Corporation, Mountain View, CA, USA

Rich A. Eiferman, MD, FACS Department of Ophthalmology, University of Louisville, Louisville, KY, USA

Antonio Fea, MD, PhD Clinica Oculistica-Universita’ di Torino, Ospedale Oftalmico, Torino, Italy

Ronald Leigh Fellman, MD Department of Ophthalmology, Glaucoma Associates of Texas, Eye Institute of Texas, Dallas, TX, USA

Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA

Andrew Francis, MD Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA

Jeffrey Freedman, MBBCh, FRCS (Edin), FCS (SA) Department of Ophthalmology, SUNY, Downstate University Hospital, Brooklyn, NY, USA

Ulrich Giers, MD Augen-klinik OWL, Detmold, Germany

Ivan Goldberg, AM, MBBS, FRANZCO, FRACS Department of Ophthalmology, Sydney Eye Hospital, Sydney, NSW, Australia

Haiyan Gong, MD, PhD Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
Contributors

Judy F. Gordon, DVM ClinReg Consulting Services, Inc., Laguna Beach, CA, USA

Veva De Groot, MD, PhD Department of Ophthalmology, University Hospital Antwerp, Edegem, Belgium

Algis Grybauskas Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA

David Haffner Vice President, Product Development, Glaukos Corp., Laguna Hills, CA, USA

Richard A. Hill, MD Orange County Glaucoma Inc., Santa Anna, CA, USA

Christopher Horvath, PhD AqueSys, Inc, Aliso Viejo, CA, USA

Guofu Huang, MD, PhD Department of Ophthalmology, University of California, San Francisco, CA, USA

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China

Tsontcho Ianchulev, MD, MPH Department of Ophthalmology, University of California, San Francisco (UCSF), San Francisco, CA, USA

Parul Ichhpujani, MS, MD Glaucoma Service, Department of Ophthalmology, Level III, Block D, Government Medical College and Hospital, Chandigarh, India

Jeffrey A. Kammer, MD Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA

Kevin Kaplowitz, MD Department of Ophthalmology, Health Sciences Center, Stony Brook University, Stony Brook, NY, USA

Toshimitsu Kasuga, MD Department of Ophthalmology, University of California, San Francisco, CA, USA

Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan

Edward Kim, BA Glaucoma Institute of Beverly Hills, Los Angeles, CA, USA

Paul A. Knepper, MD, PhD Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA

Department of Ophthalmology, Northwestern University Medical School, Chicago, IL, USA

Robert L. Kramm, MD, MSE ClinReg Consulting Services, Inc., Ft. Lauderdale, FL, USA

Paulius V. kuprys Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA

Gabrielle LaHatte Formerly a Staff Attorney with Tarolli, Sundheim, Covell & Tummino, LLP, Cleveland, OH, USA

Graham A. Lee, MBBS (Qld), MD, FRANZCO Department of Ophthalmology, City Eye Center, University of Queensland, Brisbane, QLD, Australia

Shan C. Lin, MD Department of Ophthalmology, University of California, San Francisco, CA, USA

Nils A. Loewen, MD, PhD Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Steven L. Mansberger, MD, MPH Devers Eye Institute at Legacy Health, Portland, OR, USA
Contributors

Andrew J. Marshall, PhD Healionics Corporation, Seattle, WA, USA

Lindsay A. McGrath, MBBS Department of Ophthalmology, City Eye Center, University of Queensland, Brisbane, QLD, Australia

Shlomo Melamed, MD The Sam Rothberg Glaucoma Center, Goldschleger Eye Institute, Sheba Medical Center, Tel Aviv University, Tel Hashomer, Ramat Gan, Israel

Marlene R. Moster, MD Anne and William Goldberg Glaucoma Service, Wills Eye Institute, Jefferson Medical College, Philadelphia, PA, USA

Peter A. Netland, MD, PhD Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA

Sayeh Pourjavan, MD, PhD Department of Ophthalmology, Cliniques Universitaires St. Luc, UCL, Brussels, Belgium

Cecile J. Roy, PhD iSTAR Medical SA, Isnes, Belgium

John R. Samples, MD Department of Surgery, Rocky Vista University, Parker, CO, USA

Western Glaucoma Foundation, Portland, OR, USA

Cornea Consultants of Colorado, Littleton, CO, USA

The Eye Clinic, Portland, OR, USA

J. Wesley Samples Formerly an Intellectual Property Litigation Associate with Klarquist Sparkman, LLP, Portland, OR, USA

Donald Schwartz, MD, OD, MPA, MOpt Department of Ophthalmology, Long Beach EyeCare Associates, Long Beach, CA, USA

Shakeel Shareef, MD Flaum Eye Institute, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY, USA

Alon Skaat, MD New York Eye & Ear Infirmary, New York, NY, USA

The Sam Rothberg Glaucoma Center, Goldschleger Eye Institute, Sheba Medical Center, Tel Aviv University, Tel Hashomer, Ramat Gan, Israel

Kevin Skuran Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA

Diamond Y. Tam, MD Department of Ophthalmology, University of Toronto, Toronto, ON, Canada

Marc Töteberg-Harms, MD Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland

Vanessa I. Vera, MD Unidad Oftalmologica De Caracas, Caracas, Venezuela

Lilit Voskanyan, MD, PhD Glaucoma, S.V. Malayan Eye Center, Yerevan, Arabkir, Armenia

Iris Vuong Glaucoma Institute of Beverly Hills, Los Angeles, CA, USA
Part I

Considerations in Device Development
Introduction

Intraocular pressure (IOP) is maintained within a normal range from a dynamic balance between aqueous humor formation and drainage. Dysfunctional aqueous drainage results in elevated IOP, which is a causative risk factor for the development and progression of primary open-angle glaucoma (POAG) [1]. An understanding of how to lower IOP using microinvasive glaucoma surgery (MIGS) begins with an understanding of the normal anatomy of the structures related to the drainage of aqueous humor and changes in POAG. The major drainage structures for aqueous humor are the conventional or trabecular outflow pathway, which is comprised of the uveal and corneoscleral portions of the trabecular meshwork, the juxtacanalicular connective tissue, Schlemm’s canal, the collector channels, and the aqueous veins. Aqueous humor drains from the anterior chamber through progressively smaller channels of the trabecular meshwork into a circumferentially-oriented channel called Schlemm’s canal. From this canal, circuitous channels weave toward the surface of the sclera, ultimately joining the episcleral vasculature which drains into the venous system. Flow through this system is driven by a bulk-flow pressure gradient, and active transport is not involved as neither metabolic poisons nor temperature affects this system to any significant degree [2, 3]. 10–20 % of total aqueous outflow has been reported to leave the normal eye via the uveoscleral pathway [4, 5] which has become a primary target for medical intervention in glaucoma. However, this chapter will only focus on the conventional trabecular outflow pathway.

Normal Anatomy of Aqueous Outflow Pathway

Trabecular Meshwork

The trabecular meshwork (TM) is a triangular-shaped band of tissue encircling the anterior chamber angle (Figs. 1.1 and 1.2). The apex of the triangle is attached to the terminal edge of Descemet’s membrane of the cornea which is termed Schwalbe’s line. From this point of origin, the TM expands as it bridges the iridocorneal angle and ends posteriorly by blending with the stroma of the iris, ciliary body, and scleral spur. The scleral spur projects like a shelf onto the base of this triangle and also serves as a point of insertion for the longitudinal bundle of the ciliary muscle. The length of the TM from Schwalbe’s line to the scleral spur is 694.9 ± 109 μm in men and 713.2 ± 107 μm in women by histological assessment [8]. Using optical coherence tomography (OCT), the mean length of the TM was found to be 466.9 ± 60.7 μm in vivo [9]. An imaginary line drawn from Schwalbe’s line to the tip of the scleral spur separates the TM into two major parts. The portions of the TM external to the imaginary line include the corneoscleral meshwork, the juxtacanalicular tissue, and Schlemm’s canal. The portion of the TM closer to the anterior chamber internal to this imaginary line is termed the uveal meshwork because it extends from Schwalbe’s line to the stromas of the ciliary body and iris (Figs. 1.1 and 1.2). Uveal meshwork is readily viewed gonioscopically.

It is important to understand the relationship of the anterior chamber angle structures as viewed from at least two perspectives—the view obtained from meridional sections and the view obtained gonioscopically. These two views are compared in Figs. 1.3 and 1.4. Figure 1.3 shows a macrophotograph of the angle in a meridional view, while Fig. 1.4 depicts an en