Science of Synthesis
Hetarenes and Related Ring Systems
Five-Membered Hetarenes with Two Nitrogen or Phosphorus Atoms

Volume Editor
R. Neier

Editorial Board
D. Bellus
E. N. Jacobsen
S. V. Ley
R. Noyori
M. Regitz
P. J. Reider
E. Schaumann
I. Shinkai
E. J. Thomas
B. M. Trost
Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:
- Methods critically evaluated by leading scientists
- Background information and detailed experimental procedures
- Schemes and tables which illustrate the reaction scope
Science of Synthesis

Houben–Weyl Methods of Molecular Transformations

Category 2
Volume 12

Hetarenes and Related Ring Systems
Five-Membered Hetarenes with Two Nitrogen or Phosphorus Atoms

Volume Editor
R. Neier

Responsible Member of the Editorial Board
D. Bellus

Authors
M. R. Grimmett
G. Hajos
K. Karaghiosoff
F. Mathey
Z. Riedl
A. Schmidpeter
W. Stadlbauer
B. Stanovnik
J. Sverte

2002
Georg Thieme Verlag
Stuttgart · New York
Die Deutsche Bibliothek – CIP-Einheitsaufnahme

Library of Congress Cataloging in Publication Data
p. cm.
Includes bibliographical references and index.

[Houben–Weyl methods of organic chemistry]

British Library Cataloguing in Publication Data
1. Organometallic compounds – Synthesis 2. Organic compounds – Synthesis – Laboratory manuals I. Neier, R. 547.2

ISBN 3-13-112271-4
(Georg Thieme Verlag, Stuttgart)
ISBN 0-86577-951-1
(Thieme New York)

Date of publication: May 8, 2002
Copyright and all related rights reserved, especially the right of copying and distribution, multiplication and reproduction, as well as of translation. No part of this publication may be reproduced by any process, whether by photostat or microfilm or any other procedure, without previous written consent by the publisher. This also includes the use of electronic media of data processing or reproduction of any kind.

This reference work mentions numerous commercial and proprietary trade names, registered trademarks and the like (not necessarily marked as such), patents, production and manufacturing procedures, registered designs, and designations. The editors and publishers wish to point out very clearly that the present legal situation in respect of these names or designations or trademarks must be carefully examined before making any commercial use of the same. Industrially produced apparatus and equipment are included to a necessarily restricted extent only and any exclusion of products not mentioned in this reference work does not imply that any such selection of exclusion has been based on quality criteria or quality considerations.

Warning! Read carefully the following: Although this reference work has been written by experts, the user must be advised that the handling of chemicals, microorganisms, and chemical apparatus carries potentially life-threatening risks. For example, serious dangers could occur through quantities being incorrectly given. The authors took the utmost care that the quantities and experimental details described herein reflected the current state of the art of science when the work was published. However, the authors, editors, and publishers take no responsibility as to the correctness of the content. Further, scientific knowledge is constantly changing. As new information becomes available, the user must consult it. Although the authors, publishers, and editors took great care in publishing this work, it is possible that typographical errors exist, including errors in the formulas given herein. Therefore, it is imperative that and the responsibility of every user to carefully check whether quantities, experimental details, or other information given herein are correct based on the user’s own understanding as a scientist. Scale-up of experimental procedures published in Science of Synthesis carries additional risks. In cases of doubt, the user is strongly advised to seek the opinion of an expert in the field, the publishers, the editors, or the authors. When using the information described herein, the user is ultimately responsible for his or her own actions, as well as the actions of subordinates and assistants, and the consequences arising therefrom.
Preface

As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work *Houben–Weyl Methods of Organic Chemistry* will be published starting in the year 2000.

To reflect the new broader need and focus, this new edition has a new title, *Science of Synthesis, Houben–Weyl Methods of Molecular Transformations*. *Science of Synthesis* will benefit from more than 90 years of experience and will continue the tradition of excellence in publishing synthetic chemistry reference works. *Science of Synthesis* will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of *Science of Synthesis* will provide chemists with the most reliable methods to solve their synthesis problems. *Science of Synthesis* will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make *Science of Synthesis* the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

The Editorial Board

D. Bellus (Basel, Switzerland)
P. J. Reider (New Jersey, USA)
E. N. Jacobsen (Cambridge, USA)
E. Schaumann (Clausthal-Zellerfeld, Germany)
S. V. Ley (Cambridge, UK)
I. Shinkai (Tsukuba, Japan)
R. Noyori (Nagoya, Japan)
E. J. Thomas (Manchester, UK)
M. Regitz (Kaiserslautern, Germany)
B. M. Trost (Stanford, USA)

October 2000
Volume Editor's Preface

This volume covers the synthesis of five-membered heterocyclic compounds with either two nitrogen or phosphorus atoms or five-membered heterocycles containing both one nitrogen and one phosphorus atom. The oxidation state of the described heterocycles corresponds to the maximum unsaturation. Maximum unsaturation means that the cyclic conjugation in the five-membered ring must not be interrupted by either a sp^3-hybridized carbon atom or a heteroatom incapable of π-conjugation. In accordance with the common principle of the series, the benzoannulated systems are treated directly after the monocyclic systems. The indazoles and benzimidazoles, the benzoannulated systems of pyrazoles and imidazoles, are so important that they are treated in separate chapters. In fusing a five-membered heterocycle containing two heteroatoms to a six-membered ring, one of the heteroatoms can be common to both rings. For these systems, the heterocyclic systems and their analogues containing one or more heteroatoms in the six-membered ring were combined in the same chapter, as long as the synthesis of these compounds proceeded via a ring-closure of the five-membered ring. The same rule was observed for the phosphorus and arsenic analogues: the azaphospholes, the azaarsoles, and the diprophospholes.

Most of the ring systems covered in Volume 12 are stable compounds, in accordance with the goals set for Science of Synthesis. The phosphorus and arsenic containing heterocycles are the most sensitive class of compounds treated in this volume. It is obvious, alone from the size of the chapters treating the different classes of heterocycles, that the knowledge and the number of synthetic procedures vary widely. Some of the heterocyclic rings were first synthesized almost 150 years ago like the imidazole ring (H. Debus 1858). The structures of the parent five-membered heterocycles were proven 120 years ago (imidazole: B. Radziszewski 1882, F. R. Japp 1886, and W. Marckwald 1889; pyrazole: L. Knorr 1887). In contrast to these compound classes, which have a rich history, the first member of the diprophospholes was first reported just over 20 years ago (Issleib 1981) and the newest member of this family, the 1,2-diprophosphole, only appeared in 1996 (Schmidpeter). Since the chemistry of imidazopyridines, pyrazolopyridines, imidazole, benzimidazole, pyrazole, and indazole has been worked on for the longest time, the chapters dedicated to these heterenes are by far the largest ones in this volume.

The synthesis of the pyrazoles and indazoles and the synthesis of imidazoles and benzimidazoles were discussed in the excellent chapters which have appeared in Houben–Weyl Vol. E 8b and in Houben–Weyl Vol. E 8c, respectively. The goal of the authoritative contributions in Houben–Weyl has been to present a comprehensive review of a chosen field. The current authors of Science of Synthesis referred to these chapters while preparing the new contributions. However, the chapters written for Science of Synthesis could not be just an update of the former contributions, but had to be rewritten according to the new rules. Obviously, the authors have been asked to include the latest developments in the product classes treated in Volume 12. The important difference between Science of Synthesis and its predecessor Houben–Weyl is that the authors have been asked to evaluate the information critically. Many of the classical methods, which have been already been treated in Houben–Weyl, were included in the chapters of Science of Synthesis in order to give the reader a clear picture of the state of the art.

The new edition of Science of Synthesis, Houben–Weyl Methods of Molecular Transformations takes into account, that an electronic version will also be published. To give the full picture of a field the worked-out, representative synthetic procedures had to be included in the printed as well as in the electronic versions. It has not been an
easy task for the authors, to make a judicious choice from the huge number of reported synthetic procedures in the literature. Thieme and its editorial board have relaunched the Houben-Weyl series with the goal to achieve very high standards indeed. Science of Synthesis, Houben-Weyl Methods of Molecular Transformations is designed and written to stimulate new discoveries and developments both in industry and in academia. To accomplish this goal the chapters in Science of Synthesis have to give expert guidance to scientists’ synthesis problems. It has not been a trivial undertaking for the authors to write contributions, which meet these high standards. As Volume 12 belongs to the early volumes of this series, the authors had to develop the rules and many formal aspects of the presentation in close collaboration with the editorial office of Thieme. Not only the organizational scheme, but also the guidelines have been refined during this collaboration. Many fruitful contacts between the authors, the volume editor, the responsible member of the editorial board, and the editorial office have been necessary to advance our common goal. I am heavily indebted to all the authors for having been ready to invest their scientific expertise in writing their chapters. Their impressive enthusiasm and willingness to accept suggestions for modifications even at the last minute, have contributed considerably to the quality of this volume. It has been a pleasure to work with them and to be able to count on their knowledge and understanding.

Without the steady help and the excellent advice of Professor Daniel Bellus, it would have been impossible to solve many of the problems en route. It has been an extraordinary chance to collaborate on this project with Professor Bellus, as responsible member of the editorial board. The collaboration with Thieme has always been smooth. The discussions with the members of the editorial office in Stuttgart were characterized by the high standards typical for Thieme and by their willingness to help settle problems. I am especially indebted to Dr. Guido F. Herrmann, who helped to solve the difficulties encountered at the beginning of the project. I am deeply indebted to Dr. M. Fiona Shortt for her efficiency and for her help at all stages of the project. Finally, Lindsey A. Sturdy as a member of the editorial team and Dr. Joe P. Richmond as a freelance member of the editorial team have also made major contributions.

Volume Editor

Reinhard Neier

Neuchâtel, February 2002
Volume 12:
Five-Membered Hetarenes with Two Nitrogen or Phosphorus Atoms

Preface ... V

Volume Editor’s Preface .. VII

Table of Contents .. XI

Introduction
R. Neier .. 1

12.1 Product Class 1: Pyrazoles
B. Stanovnik and J. Svete 15

12.2 Product Class 2: 1H- and 2H-Indazoles
W. Stadlbauer .. 227

12.3 Product Class 3: Imidazoles
M. R. Grimmett ... 325

12.4 Product Class 4: Benzimidazoles
M. R. Grimmett ... 529

12.5 Product Class 5: Azaindolizines with Two Nitrogen Atoms in the Five-Membered Ring
G. Hajos and Z. Riedl ... 613

12.6 Product Class 6: Azaphospholes and Azarsoles
A. Schmidpeter and K. Karaghiosoff 679

12.7 Product Class 7: Diphospholes
F. Mathey .. 705

Keyword Index ... 719

Author Index ... 741

Abbreviations ... 791
Table of Contents

Introduction
R. Neier

Introduction .. 1

12.1 Product Class 1: Pyrazoles
B. Stanovnik and J. Svet

12.1 Product Class 1: Pyrazoles .. 15
12.1.1 Synthesis by Ring-Closure Reactions 21
12.1.1.1 By Formation of One N—C and Two C—C Bonds 21
12.1.1.1 Fragments N—N, C, and C 21
12.1.1.1.1 Method 1: From [(Aryldiazenc)(methoxycarbonyl)methylene]triphenylphosphoranes and Dichlorocarbene 21
12.1.1.2 By Formation of Two N—C Bonds 22
12.1.1.2.1 Fragments C—C—C and N—N 22
12.1.1.2.1.1 From 1,3-Dicarbonyl Compounds (and Acetals Thereof) and Hydrazines 22
12.1.1.2.1.1 Method 1: From O,O-Acetals of 1,3-Dicarbonyl Compounds and Hydrazines 23
12.1.1.2.1.1.1 Variation 1: From Malonaldehyde Acetals and Hydrazines 23
12.1.1.2.1.1.2 Variation 2: From 3,3-Dialkoxyalkan-1-ones and Hydrazines 24
12.1.1.2.1.2 Method 2: From Malonaldehyde and Derivatives and Hydrazines 25
12.1.1.2.1.3 Method 3: From β-Oxoaldehydes and Hydrazines 25
12.1.1.2.1.3.1 Variation 1: From Carbonyl Compounds and Alkyl Formate Followed by Reaction with Hydrazine Hydrate 26
12.1.1.2.1.4 Method 4: From β-Diketones and Hydrazines 28
12.1.1.2.1.4.1 Variation 1: From 2-Hydroxyiminio-1,3-dicarbonyl Compounds and Hydrazines 32
12.1.1.2.1.4.2 Variation 2: From 2-Acetoxy-1,3-dicarbonyl Compounds and Hydrazines 33
12.1.1.2.1.5 Method 5: From β-Diketones and Acylhydrazines 34
12.1.1.2.1.6 Method 6: From 2-Arylazo-1,3-dicarbonyl Compounds and Acylhydrazines 35
12.1.1.2.1.7 Method 7: From 3-Oxocarboxylic Acids and Hydrazines 36
12.1.1.2.1.7.1 Variation 1: From 3-Oxocarboxylic Acids and 1-Alkyl-1-nitrosohydrazines 41
12.1.1.2.1.7.2 Variation 2: From 3-Oxocarboxothioic Esters or 3-Oxocarbothioamides and Hydrazine ... 41
12.1.1.2.1.8 Method 8: From 3-Oxocarboxylic Acid Derivatives and Acylhydrazines 42
12.1.1.2.1.9 Method 9: From α-Cyano Ketones and Hydrazines 43
12.1.1.2.1.9.1 Variation 1: From α-Cyano-α-(N-methylanilino) Ketones and Hydrazines 44
12.1.2.1.1.9.2 Variation 2: From α-Cyano Ketones and Semicarbazides and Thiosemicarbazides ... 44
12.1.2.1.1.9.3 Variation 3: From α-Cyano Ketones and Arylsulfonylhydrazides ... 45
12.1.2.1.1.9.4 Variation 4: From α-Cyano-α-hydroxyiminomethyl Ketones and Hydrazines ... 46
12.1.2.1.1.10 Method 10: From Malonic Acid Derivatives and Hydrazines ... 46
12.1.2.1.1.10.1 Variation 1: From Malonic Acid Derivatives and Arylhydrazines ... 47
12.1.2.1.1.10.2 Variation 2: From Malonic Acid Derivatives and 1-Acetyl-2-arylmethyldrazines ... 47
12.1.2.1.1.10.3 Variation 3: From Malonic Acid Anilide Esters and Arylhydrazines ... 48
12.1.2.1.1.10.4 Variation 4: From Thiomalonic Acid O,O-Dialkyl Esters and Hydrazine ... 48
12.1.2.1.1.11 Method 11: From Cyanoacetic Acid Esters and Hydrazine ... 49
12.1.2.1.1.11.1 Variation 1: From Alkyl [Alkoximino)methyl]acetates and Arylhdyrazine ... 50
12.1.2.1.1.11.2 Variation 2: From Malononitriles and Its Derivatives and Hydrazine ... 51
12.1.2.1.1.12 Method 12: From Propanediimide Esters and Hydrazine ... 52
12.1.2.1.1.12.1 Variation 1: From 2-Substituted Malononitriles and Hydrazine ... 52
12.1.2.1.1.13 Method 13: From Alk-2-en-1-ones and Hydrazine ... 53
12.1.2.1.1.13.1 Variation 1: From 2-Acryloyloxiranes and Hydrazine ... 53
12.1.2.1.1.13.2 Variation 2: From 2-Substituted Alk-2-en-1-ones and Hydrazine ... 54
12.1.2.1.1.13.3 Variation 3: From 1,2-Disubstituted 3-(Dimethylamino)prop-2-en-1-ones and Hydrazine ... 55
12.1.2.1.1.13.4 Variation 4: From 2-Acryloyl-3-(dimethylamino)prop-2-enones and Hydrazine ... 57
12.1.2.1.1.13.5 Variation 5: From Alkyl 2-Acyl-3-alkoxyprop-2-enones and Hydrazine ... 57
12.1.2.1.1.13.6 Variation 6: From 3-Haloalk-2-en-1-ones and Hydrazine ... 60
12.1.2.1.1.13.7 Variation 7: From 3-(Alkylsulfanyl)-2-[(alkylsulfanyl)methyl]alk-2-en-1-ones and Hydrazine ... 60
12.1.2.1.1.13.8 Variation 8: From Acylketene O,N-Acetals or N,S-Acetals and Hydrazine ... 61
12.1.2.1.1.13.9 Variation 9: From 3,3-Bis(methylsulfanyl)prop-2-en-1-ones and Hydrazine ... 62
12.1.2.1.1.14 Method 14: From Acrylic Acid Derivatives and Hydrazine ... 64
12.1.2.1.1.15 Method 15: From 3,3-Diamino-2-nitroprop-2-enethioamides and Hydrazine ... 65
12.1.2.1.1.15.1 Variation 1: From 3-Aminoprop-2-enethioamide and Hydrazine ... 66
12.1.2.1.1.16 Method 16: From Prop-2-enenitriles and Hydrazine ... 67
12.1.2.1.1.16.1 Variation 1: From Prop-2-enenitriles and Hydrazides or Thiohydrazides ... 67
12.1.2.1.1.16.2 Variation 2: From (Alkoxymethylene)malononitriles and Hydrazine ... 68
12.1.2.1.1.16.3 Variation 3: From (Aminomethylene)malononitriles and Hydrazine ... 70
12.1.2.1.1.16.4 Variation 4: From 3-(Alkylsulfanyl)acrylonitriles and Hydrazine ... 70
12.1.2.1.1.16.5 Variation 5: From 2-Haloacrylonitriles and Hydrazine ... 71
12.1.2.1.1.16.6 Variation 6: From 3-Haloacrylonitriles and Hydrazine ... 72
12.1.2.1.1.16.7 Variation 7: From 2,3-Dihaloformonitriles and Hydrazine ... 72
12.1.2.1.1.16.8 Variation 8: From Cyanoketene N,S-Acetals or S,S-Acetals and Hydrazine ... 73
12.1.2.1.1.16.9 Variation 9: From Tetracyanoethene and Hydrazine ... 76
12.1.2.1.1.17 Method 17: From Alk-2-yn-1-ones and Hydrazine ... 77
12.1.2.1.1.18 Method 18: From Alk-2-yenonitriles and Hydrazine ... 79
12.1.2.1.1.19 Method 19: From 1,3-Dienes, Alk-1-en-3-yne, or AlkA-1,3-dienes and Hydrazine ... 79
12.1.2.1.1.20 Method 20: From Active Methylene Compounds and Diazenio Salts ... 80
12.1.2.1.20.1 Variation 1: From Active Methylene Compounds and Tosyl Azide ... 82
12.1.2.1.2 From Other Compounds and Hydrazine 82
12.1.2.1.2.1 Method 1: From Haloalkenes, Hydroxyalkenes, Hydroxyalkynes, or Halo-, Hydroxy-, and Aminocarbonyl Compounds and Hydrazine 82
12.1.2.1.2.2 Method 2: From Nitroalkanes or 1-Nitroalkanes and Hydrazine 83
12.1.2.1.2.2.1 Variation 1: From 1,1-Dinitroalkanes and Hydrazine 83
12.1.2.1.2.2.2 Variation 2: From 1,3-Dinitroalkanes and Hydrazine 84
12.1.2.1.3 By Formation of One N—C and One C—C Bond 84
12.1.2.1.3.1 Fragments N—N—C and C—C 84
12.1.2.1.3.1.1 From Diazocompounds by 1,3-Dipolar Cycloadditions 84
12.1.2.1.3.1.1.1 Method 1: From Diazooalkanes and Alkynes 84
12.1.2.1.3.1.1.1.1 Variation 1: From Furanosylalkynes or 1-Diazo-1-furanosylalkanes 87
12.1.2.1.3.1.2 Method 2: From Diazooalkanes and Alkenes Followed by Elimination 88
12.1.2.1.3.1.3 Method 3: From Disubstituted Diazoalkanes and Alkynes 90
12.1.2.1.3.1.4 Method 4: From 2-Diazo carbonyl Compounds and Alkynes 91
12.1.2.1.3.1.5 Method 5: From Alkenes and Diazo carbonyl Compounds Followed by Elimination .. 91
12.1.2.1.3.1.6 Method 6: From Dimethyl Diazomalonate and Dimethyl Malonate 92
12.1.2.1.3.2 From Nitrile Imines ... 92
12.1.2.1.3.2.1 Method 1: From Nitrile Imines and Alkynes 92
12.1.2.1.3.2.2 Method 2: From Nitrile Imines and Alkenes with a Leaving Group at the 3-Position ... 93
12.1.2.1.3.2.2.1 Variation 1: From Nitrile Imines and 1,3-Dicarbonyl Compounds 94
12.1.2.1.3.2.2.2 Variation 2: From 1-Perfluoroalkyl-1,3-dicarbonyl Compounds and Hydrazonoyl Halides .. 94
12.1.2.1.3.2.3 Variation 3: From Ketene Aminals and Nitrile Imines 95
12.1.2.1.3.2.4 Variation 4: From Hydrazonoyl Halides and Phosphoranes 96
12.1.2.1.3.3 From Hydrazones and 1,2-Dicarbonyl Compounds 97
12.1.2.1.3.4 From Arylhydrazones and β-Oxo Esters 98
12.1.2.1.3.5 From Arylhydrazones and Dimethyl Acetylenedicarboxylate 98
12.1.2.1.3.6 Fragments N—N—C—C and C 99
12.1.2.1.3.6.1 Method 1: From Hydrazones or Azines by Vilsmeier–Haack Reaction 99
12.1.2.1.3.6.2 Method 2: From Aldehydes and Tosylhydrazones of (Dialkoxypyrophosphoryl) acetaldheydes .. 99
12.1.2.1.3.6.2.1 Variation 1: From Aldehydes and Alkylated Tosylhydrazono Phosphonates 100
12.1.2.1.3.6.3 Method 3: From Hydrazones and Carboxylic Acid Derivatives 101
12.1.2.1.3.6.3.1 Variation 1: From Hydrazones and Aroyl Chloride 104
12.1.2.1.3.6.4 Method 4: From Arylhydrazones of Active Methylene Compounds and α-Halocarbonyl Compounds and Chloroacetonitrile 105
12.1.2.1.3.6.5 Method 5: From Hydrazones and (Dichloromethylene) dimethylammonium Chloride .. 105
12.1.2.1.3.6.6 Method 6: From Benzoquin Phenylhydrazones and Aldehydes 106
12.1.2.1.3.6.7 Method 7: From Monohydrazones of 1,2-Dicarbonyl Compounds and Diethyl [(Ethylsulfanyl)methyl] phosphonate 106
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1.3.2.8</td>
<td>Method 8: From Phenylhyrazones and (N)-Aryltrifluoroacetimidoyl Iodides</td>
<td>107</td>
</tr>
<tr>
<td>12.1.4</td>
<td>By Formation of One N—N Bond</td>
<td>108</td>
</tr>
<tr>
<td>12.1.4.1</td>
<td>Fragment N—C—C—N</td>
<td>108</td>
</tr>
<tr>
<td>12.1.4.1.1</td>
<td>Method 1: From 1,3-Dioximes</td>
<td>108</td>
</tr>
<tr>
<td>12.1.4.1.2</td>
<td>Method 2: From (\beta)-Aminothiocinnamic Acid Anilide</td>
<td>109</td>
</tr>
<tr>
<td>12.1.4.1.3</td>
<td>Method 3: From (N,3)-Diaryl-3-iminoprop-1-enamines</td>
<td>109</td>
</tr>
<tr>
<td>12.1.5</td>
<td>By Formation of One N—C Bond</td>
<td>110</td>
</tr>
<tr>
<td>12.1.5.1</td>
<td>Fragments N—N—C and C</td>
<td>110</td>
</tr>
<tr>
<td>12.1.5.1.1</td>
<td>Method 1: From Hyrazones of Alkane-1,3-diones</td>
<td>110</td>
</tr>
<tr>
<td>12.1.5.1.1.1</td>
<td>Variation 1: From Hyrazones of 1,1-Dialkoxy-3-oxoalkanes</td>
<td>110</td>
</tr>
<tr>
<td>12.1.5.1.1.2</td>
<td>Variation 2: From Arylhyrazones of Methyl Ketones by Acylation of the Methyl Group</td>
<td>111</td>
</tr>
<tr>
<td>12.1.5.1.2</td>
<td>Method 2: From 3-Halo-1-hydrizoaoacetones</td>
<td>112</td>
</tr>
<tr>
<td>12.1.5.1.3</td>
<td>Method 3: From Alk-1-enylhyrazones</td>
<td>113</td>
</tr>
<tr>
<td>12.1.5.1.4</td>
<td>Method 4: From 3-(2-Alkylidenehyrazino)propanenitriles</td>
<td>113</td>
</tr>
<tr>
<td>12.1.5.1.5</td>
<td>Method 5: From 2-Cyano-3-(2-alkylhydrazino)- or 2-Cyano-3-(2-arylhydrazino)but-2-enethioamides</td>
<td>114</td>
</tr>
<tr>
<td>12.1.5.1.6</td>
<td>Method 6: From [3-(Ethoxycarbonyl)-3-hydrazono-2-oxopropyl]dimethylsulfoxonium Salts</td>
<td>114</td>
</tr>
<tr>
<td>12.1.5.1.7</td>
<td>Method 7: From 3-Hydrizoaoalkanoic Acid Derivatives</td>
<td>115</td>
</tr>
<tr>
<td>12.1.5.1.8</td>
<td>Method 8: From Alk-2-ynohydrazides</td>
<td>116</td>
</tr>
<tr>
<td>12.1.5.1.9</td>
<td>Method 9: From Azines</td>
<td>116</td>
</tr>
<tr>
<td>12.1.5.1.9.1</td>
<td>Variation 1: From Symmetrical Acrolein Azines with Leaving Groups at 3-Position</td>
<td>117</td>
</tr>
<tr>
<td>12.1.5.1.9.2</td>
<td>Variation 2: From Phosphonium-Substituted Azines</td>
<td>117</td>
</tr>
<tr>
<td>12.1.5.1.10</td>
<td>Method 10: From 3-Diazoalk-1-enes</td>
<td>118</td>
</tr>
<tr>
<td>12.1.5.1.11</td>
<td>Method 11: From 3,3-Disubstituted Alk-2-en-1-one Tosylhyrazones</td>
<td>119</td>
</tr>
<tr>
<td>12.1.5.1.12</td>
<td>Method 12: From 1,3-Substituted 3-Arylhydrazonomop-1-enes by Oxidative Cyclization</td>
<td>120</td>
</tr>
<tr>
<td>12.1.6</td>
<td>By Formation of One C—C Bond</td>
<td>121</td>
</tr>
<tr>
<td>12.1.6.1</td>
<td>Fragment C—N—N—C—C</td>
<td>121</td>
</tr>
<tr>
<td>12.1.6.1.1</td>
<td>Method 1: From Mono(methylhydrazones) or Mono[(alkoxyacarbonyl)methyl]hydrazones of 1,2-Dicarbonyl Compounds</td>
<td>121</td>
</tr>
<tr>
<td>12.1.6.1.2</td>
<td>Method 2: From Mono(acylhydrazones) of 1,3-Dicarbonyl Compounds</td>
<td>122</td>
</tr>
<tr>
<td>12.1.6.1.3</td>
<td>Method 3: From Cinnamaldehyde (2-Phosphonovinyl)hydrazone Halides</td>
<td>123</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Synthesis by Ring Transformation</td>
<td>124</td>
</tr>
<tr>
<td>12.1.2.1</td>
<td>Ring Enlargement</td>
<td>124</td>
</tr>
<tr>
<td>12.1.2.1.1</td>
<td>From Three-Membered Hetero- and Carbocycles</td>
<td>124</td>
</tr>
<tr>
<td>12.1.2.1.1.1</td>
<td>Method 1: Synthesis from Cyclopropanes</td>
<td>124</td>
</tr>
<tr>
<td>12.1.2.1.1.2</td>
<td>Method 2: Synthesis from Oxiranes</td>
<td>125</td>
</tr>
<tr>
<td>12.1.2.1.1.3</td>
<td>Method 3: Synthesis from Thiirene 1,1-Dioxides</td>
<td>126</td>
</tr>
</tbody>
</table>