Collaborative Design in Virtual Environments
International Series on
INTELLIGENT SYSTEMS, CONTROL, AND AUTOMATION:
SCIENCE AND ENGINEERING

VOLUME 48

Editor:
Professor S.G. Tzafestas, National Technical University of Athens, Athens, Greece

Editorial Advisory Board
Professor P. Antsaklis, University of Notre Dame, Notre Dame, IN, USA
Professor P. Borne, Ecole Centrale de Lille, Lille, France
Professor D.G. Caldwell, University of Salford, Salford, UK
Professor C.S. Chen, University of Akron, Akron, Ohio, USA
Professor T. Fukuda, Nagoya University, Nagoya, Japan
Professor S. Monaco, University La Sapienza, Rome, Italy
Professor G. Schmidt, Technical University of Munich, Munich, Germany
Professor S.G. Tzafestas, National Technical University of Athens, Athens, Greece
Professor F. Harashima, University of Tokyo, Tokyo, Japan
Professor N.K. Sinha, McMaster University, Hamilton, Ontario, Canada
Professor D. Tabak, George Mason University, Fairfax, Virginia, USA
Professor K. Valavanis, University of Denver, Denver, USA

For other titles published in this series, go to
www.springer.com/series/6259
Collaborative Design in Virtual Environments
Preface

Collaborative Virtual Environments (CVEs) are multi-user virtual realities that actively support communication, collaboration, and coordination. All of the academic books in this area are more focused on the theory, user-centred design, realisation and evaluation of Collaborative Virtual Environments in general. In contrast, the emphasis on studying designers’ behaviours/actions/patterns in CVEs distinguishes this book from many general books which more deal with the design and development of CVEs. As more researchers in design and related areas progressively employ CVEs as their base of enquiry, we see a need for a reference guide bringing the existing status of CVEs into awareness and expanding on recent research.

This book offers a comprehensive reference volume to the state-of-the-art in the area of design studies in CVEs. This book is an excellent mix of over 16 leading researcher/experts in multiple disciplines from academia and industry. All authors are experts and/or top researchers in their respective areas and each of the chapters has been rigorously reviewed for intellectual content by the editorial team to ensure a high quality. This book provides up-to-date insight into the current research topics in this field as well as the latest technological advancements and the best working examples. Many of these results and ideas are also applicable to other areas such as CVE for design education. Predominantly, the chapters introduce most recent research projects on theories, applications and solutions of CVEs for design purpose. More specifically, the central focus is on the manner in which they can be applied to influence practices in design and design related industries.

Overall, this book offers an excellent reference for the postgraduate students, the researchers and the practitioners who need a comprehensive approach to study the design behaviours in CVEs. This book is a useful and informative source of materials for those interested in learning more on using/developing CVEs to support design and design collaboration. The target audiences of the book are practitioners, academics, researchers, and graduate students at universities, and industrial research that work with CVEs and digital media in a wide range of design areas.

The book has 5 sections and 16 chapters totally. The sections are listed as follows and more information can be found in the Table of Contents;

Part I. Virtual Environments for Design: Fundamentals
Part II. Representation and Embodiments in Collaborative Virtual Environments: Objects, Users, and Presence
Part I. Virtual Environments for Design: Fundamentals

To begin, Professor Mary Lou Maher overviews the technical and social issues of CVEs and their impact on designers in her keynote chapter *Designers and Collaborative Virtual Environments*. This overview of CVEs sets the context and frames the scope of the book. It discusses how CVEs has lead to new ways for designers to collaborate and new kinds of places for designers to design.

Apparently, designing in virtual environments unavoidably involves visual-spatial cognition. The second chapter *Visual-Spatial Learning and Training in Collaborative Design in Virtual Environments* by Maria Kozhevnikov and Andre Garcia reviews different types of virtual environments and discusses the major advantages that these environments can offer in the domain of visual-spatial performance. The first part is then followed by the following four parts in which there are chapters relating to more specific aspects of collaborative design in virtual environments.

Part II. Representation and Embodiments in Collaborative Virtual Environments: Objects, Users, and Presence

This part highlights issues with the representation of objects and embodiments of users by avatars in CVEs. This part develops an understanding of the nature of presence in CVEs from real-world investigation of the means by which users experience CVEs. The three chapters in the second part present current research in this area.

Chiu-Shui Chan explored in *Design Representation and Perception in Virtual Environments* two important cognitive activities involved in designing in virtual environments. The first activity is design representation that is mentally created during the design processes. The second activity relates to human perception, which has not been changed by high-tech developments.

Form and content are two basic concepts that have a significant impact on the sense of presence in virtual environments. The second chapter by Rivka Oxman *Design Paradigms for the Enhancement of Presence in Virtual Environments* discusses current research in the design of presence in virtual environments.

Co-presence has been considered as a very critical factor in CVEs. Xiangyu Wang and Rui Wang follow Rivka Oxman’s discussion in the third chapter, *Co-presence in Mixed Reality-Mediated Collaborative Design Space*, and reflect on the concept and characteristics of co-presence, by considering how Mixed Reality-mediated collaborative virtual environments could be specified, and therefore to provide distributed designers with a more effective design environment that improves the sense of “being together”.
Part III. Design Cooperation: Sharing Context in Collaborative Virtual Environments

The third part contains chapters addressing collaboration, communication, and coordination methods and issues in using CVEs for collaborative design activities.

The first chapter by Walid Tizani, Collaborative Design in Virtual Environments at Conceptual Stage, outlines the requirements of collaborative virtual systems and proposes methodologies for the issues of concurrency and the management of processes.

The second chapter by Jeff WT Kan, Jerry J-H Tsai and Xiangyu Wang, “Scales” Affecting Design Communication in Collaborative Virtual Environments, explores the impacts of large and small scales of designed objects towards the communication in three-dimensional collaborative virtual environments.

As a means for design coordination and progress monitoring during the construction phase, the chapter by Feniosky Peña-Mora, Mani Golparvar-Fard, Zeeshan Aziz and Seungjun Roh, Design Coordination and Progress Monitoring During the Construction Phase, presents a complementary 3D walkthrough environment which provides users with an intuitive understanding of the construction progress using advanced computer visualization and colour and pattern coding techniques to compare the as-planned with the as-built construction progress. The innovation of this method is to superimpose 3D Building Information Models (BIM) over construction photographs.

Part IV. How Designers Design in Collaborative Virtual Environments

The fourth section looks at how designers design in CVEs. Nobuyoshi Yabuki sets out in his chapter, Impact of Collaborative Virtual Environments on Design Process, to review the current design and engineering processes and identifies issues and problems in design and construction of civil and built environments. Based on these findings, he then investigates and summarizes the significant impacts of CVEs on design and construction of civil and built environments.

As an effort to study how designers learn design in CVEs, in their chapter A Pedagogical Approach to Exploring Place and Interaction Design in Collaborative Virtual Environments, Ning Gu and Kathryn Merrick report on their experience of teaching the design of virtual worlds as a design subject, and discusses the principles for designing interactive virtual worlds.

Ellen Yi-Luen Do, wrote the third chapter, Sketch that Scene for Me and Meet Me in Cyberspace. It discusses several interesting projects using sketching as an interface to create or interact in the 3D virtual environments.

In the final chapter in this part, A Hybrid Direct Visual Editing Method for Architectural Massing Study in Virtual Environments, Jian Chen presents a hybrid environment to investigate the use of a table-prop and physics-based manipulation, for quick and rough object creation and manipulation in three-dimensional (3D) virtual environments.
Part V. Case Studies

This part collects 4 chapters on emerging technology implementation and applications of virtual environments in collaborative design.

Firstly, Bharat Dave, in his chapter, *Spaces of Design Collaboration*, emphasizes the socially and spatially situated nature of collaborative design activities and settings, and identifies issues that remain critical for future collaborative virtual environments.

In the following chapter, *Modeling of Buildings for Collaborative Design in a Virtual Environment*, Aizhu Ren and Fangqin Tang, present an application independent modeling system, which enables quick modeling of irregular and complicated building structures adapted to Virtual Reality applications based on Web.

Phillip S Dunston, Laura L Arns, James D Mcglothlin, Gregory C Lasker and Adam G Kushner present in their chapter, *An Immersive Virtual Reality Mock-up for Design Review of Hospital Patient Rooms*, the utilization of Virtual Reality mock-ups to offer healthcare facility stakeholders the opportunity to comprehend proposed designs clearly during the planning and design phases, thus enabling the greatest influence on design decision making.

In the final chapter, Marc Aurel Schnabel discusses in *the Immersive Virtual Environment Design Studio*, the implications of designing, perception, comprehension, communication and collaboration within the framework of an ‘Immersive Virtual Environment Design Studio’.

Acknowledgements

We express our gratitude to all authors for their enthusiasm to contribute their research as published here. This book would not have been possible without the constructive comments and advice from Professor John Gero, from the Krasnow Institute for Advanced Study.

Xiangyu Wang
Jerry Jen-Hung Tsai
Contents

Part I: Virtual Environments for Design: Fundamentals

Designers and Collaborative Virtual Environments 3
Mary Lou Maher

Visual-Spatial Learning and Training in Collaborative Design in Virtual Environments 17
Maria Kozhevnikov, Andre Garcia

Part II: Representation and Embodiments in Collaborative Virtual Environments: Objects, Users, and Presence

Design Representation and Perception in Virtual Environments .. 29
Chiu-Shui Chan

Design Paradigms for the Enhancement of Presence in Virtual Environments 41
Rivka Oxman

Co-presence in Mixed Reality-Mediated Collaborative Design Space .. 51
Xiangyu Wang, Rui Wang

Part III: Design Cooperation: Sharing Context in Collaborative Virtual Environments

Collaborative Design in Virtual Environments at Conceptual Stage 67
Walid Tizani
“Scales” Affecting Design Communication in Collaborative Virtual Environments.. 77
Jeff W.T. Kan, Jerry J.-H. Tsai, Xiangyu Wang

Design Coordination and Progress Monitoring during the Construction Phase .. 89
Feniosky Peña-Mora, Mani Golparvar-Fard, Zeehan Aziz, Seungjun Roh

Part IV: How Designers Design in Collaborative Virtual Environments

Impact of Collaborative Virtual Environments on Design Process ... 103
Nobuyoshi Yabuki

A Pedagogical Approach to Exploring Place and Interaction Design in Collaborative Virtual Environments 111
Ning Gu, Kathryn Merrick

Sketch That Scene for Me and Meet Me in Cyberspace 121
Ellen Yi-Luen Do

A Hybrid Direct Visual Editing Method for Architectural Massing Study in Virtual Environments 131
Jian Chen

Part V: Case Studies

Spaces of Design Collaboration .. 143
Bharat Dave

Modeling of Buildings for Collaborative Design in a Virtual Environment .. 153
Aizhu Ren, Fangqin Tang

An Immersive Virtual Reality Mock-Up for Design Review of Hospital Patient Rooms 167
Phillip S. Dunston, Laura L. Arns, James D. Mcglothlin, Gregory C. Lasker, Adam G. Kushner

The Immersive Virtual Environment Design Studio 177
Marc Aurel Schnabel

Author Biographies .. 193

Author Index .. 201

Index ... 203
Part I
Virtual Environments for Design: Fundamentals

Designers and Collaborative Virtual Environments
Mary Lou Maher (University of Sydney)

Visual-Spatial Learning and Training in Collaborative Design in Virtual Environments
Maria Kozhevnikov and Andre Garcia
(Harvard Medical School and George Mason University)
Designers and Collaborative Virtual Environments

Mary Lou Maher
University of Sydney, Australia

Abstract. This chapter provides an overview of the technical and social issues of CVEs and their impact on designers. The development of CVEs has lead to new ways for designers to collaborate and new kinds of places for designers to design. As a new technology for collaborative design, CVEs impact the collaborative process by facilitating movement between working together and working individually. As new technologies for interacting with CVEs include tangible interfaces, we can expect to see changes in the perception of the design that lead to changes in spatial focus.

Keywords: 3D Virtual Worlds. Collaborative design, tangible interaction, protocol studies, adaptive agents.

1 Introduction

Collaborative Virtual Environments (CVEs) are virtual worlds shared by participants across a computer network. There are many descriptions of CVEs, and Benford et al (2001) provides one that is assumed in this chapter: The virtual world is typically presented as a 3D place-like environment in which participants are provided with graphical embodiments called avatars that convey their identity, presence, location, and activities to others. CVEs vary in their representational richness from 3D virtual reality to 2D images to text-based environments. The participants are able to use their avatars to interact with and sometimes create the contents of the world, and to communicate with one another using different media including audio, video, gestures, and text. This kind of virtual environment provides opportunities for collaborative design that gives remote participants a sense of a shared place and presence while they collaborate.

CVEs provide new ways to meet communication needs when negotiation is important and frequent, and complex topics are being discussed. They provide more effective alternatives to video conferencing and teleconferencing because they provide spaces that explicitly include both data representations and users (Churchill et. al. 2001), an important consideration in collaborative design where the focus of a meeting may be on the design ideas and models more than on the faces of the collaborating designers. During the early days of CVEs (in the early 1990s), researchers put an emphasis on simulating face-to-face co-presence as realistically as possible (Redfern and Naughton, 2002). More recently, it has been realised that
this is not enough for collaborative design, and may not necessarily even be required to develop a shared understanding of the design problem and potential solutions (Saad and Maher, 1996).

Redfern and Naughton (2002) nicely summarize a range of technical and social issues provided in the development and use of CVEs in distance education that can be adapted for understanding the development and use of CVEs in collaborative design.

Managing collaborative design processes. In a design project, collaborative work involves the interleaving of individual and group activities. Managing this process over the several months of a design project requires considerable explicit and implicit communication between collaborators. Individuals need to negotiate shared understandings of design goals, of design decomposition and resource allocation, and of progress on specific tasks. It is important that collaborators know what is currently being done and what has been done in context of the goals. In a collaborative design task this information can be communicated in the objects within the CVE where the collection of objects forms an information model, such as the Building Information Model in building design processes. DesignWorld is an example of a research project that explores ways of integrating CVEs with an external database of objects and project information (Maher et al 2006).

“**What You See Is What I See**” (WYSIWIS). Conversational and action analysis studies of traditional collaborative work have shown the importance of being able to understand the viewpoints, focuses of attention, and actions of collaborators. CVEs assume a co-presence in a virtual world that is shared, even though the viewpoint of the world may be different when the avatars are located in different places and facing different directions. Communication among the participants in a CVE is often about location and viewpoints, allowing individuals to pursue their own tasks as well as have their attention focussed on a shared task. Clark and Maher (2006) studied communication in a design studio course that was held in a CVE and showed that a significant percentage of the communication was about location and presence.

Chance meetings. Informal meetings with colleagues are rarely provided for in collaborative tools, yet they are an important characteristic of the effectiveness of many workers, particularly knowledge-workers. Recent research has investigated mechanisms for supporting chance meetings without the requirement for explicit action by the user (McGrath & Prinz, 2001). In collaborative design, studies have shown that designers move fluidly from working individually to working together. Kvan (2000) presents a model in which different stages of collaborative design are characterized as closely coupled or loosely coupled. CVEs provide the opportunity for individual work in a shared place that supports chance meetings.

Peripheral awareness is increasingly seen as an important concept in collaborative work, as evidenced in ethnographic studies. Team members involved in parallel but independent ongoing activities need to be able to co-ordinate and inform their activities through background or peripheral awareness of one another’s activities. The affordance of peripheral awareness for collaborative design in a CVE is demonstrated in a study done by Gul and Maher (2009). In this study, designers were given similar design tasks in a 3D CVE and in a remote sketching
Designers and Collaborative Virtual Environments

Designers and Collaborative Virtual Environments

environment, and asked to collaborate for a fixed period of time. An analysis of the protocol data shows that in a 3D CVE designers were inclined to spend part of the time working together and part coordinating their individual work, while in a remote sketching environment the designers did not work individually.

Non-verbal communications are known to have a strong effect on how utterances are interpreted. Research into alternative input mechanisms for capturing this type of information from the user has been underway for some time: recently, attempts are being made to make these mechanisms intuitive and non-intrusive. Clark and Maher (2006) show how participants communicated using specified gestures for their avatars in the design studio. Augmented reality approaches to CVEs promise a more spontaneous integration of movement in the physical world being communicated in a virtual world.

The “designing for two worlds” principle: People are never fully immersed in a virtual world, but are always partially in the real world too. Certain activities when carried out in the real world have a very strong impact on the participant’s activities that should be recognised in the virtual world – for example, answering the phone. DesignWorld (Maher et al 2006) accommodated this by maintaining a video of each designer in his physical office in a window adjacent to the 3D CVE with the designers’ avatars. This allows communication to be directed in the virtual world or in the physical world, and the physical presence and activities of the physical world to be communicated to the designers in the virtual world.

This chapter provides an overview of two comparative studies of collaborating designers using CVE technologies. These studies provide a starting point for understanding the impact of these technologies on design cognition and design collaboration. The chapter ends with an overview of a project that considers the opportunities that CVEs provide for designers to explore a new kind of design discipline: the design of places in virtual worlds. These three projects consider designers more comprehensively in the context of CVEs: from designers as users of CVEs to designers of CVEs.

2 Supporting Collaborative Design: From Sketching to CVEs

Sharing design ideas ranges from working together at a table while sketching with paper and pencil, to working in a CVE. CVEs do not replace sketching on paper while co-located; they provide a different kind of environment for collaborating. Since the tools for expressing and sharing ideas are so different, we would expect that the collaboration is different. Gul and Maher (2009) describe a study comparing design collaboration while designers sit together sketching to remote sketching and designing in a 3D CVE. The aim of the study is to identify the changes in collaborating designers’ behaviour and processes when they move from co-located sketching to remote designing.

The study considered three collaborative design settings: sketching around a table, remote sketching, and designing in a CVE. The sketching setting is shown in Table 1. The image in the left part of the table shows a camera image of two designers sharing a physical table with sketching tools such as paper and pencil.