Science of Synthesis

Hetarenes and Related Ring Systems
Six-Membered Hetarenes with Two Identical Heteroatoms

Volume Editor
Y. Yamamoto

Editorial Board
D. Bellus
E. N. Jacobsen
S. V. Ley
R. Noyori
M. Regitz
P. J. Reider
E. Schaumann
I. Shinkai
E. J. Thomas
B. M. Trost

Thieme
Science of Synthesis

Science of Synthesis is the authoritative and comprehensive reference work for the entire field of organic and organometallic synthesis.

Science of Synthesis presents the important synthetic methods for all classes of compounds and includes:
- Methods critically evaluated by leading scientists
- Background information and detailed experimental procedures
- Schemes and tables which illustrate the reaction scope
Science of Synthesis

Houben–Weyl Methods of Molecular Transformations

Category 2
Hetarenes and Related Ring Systems
Six-Membered Hetarenes with Two Identical Heteroatoms

Volume 16

Volume Editor
Y. Yamamoto

Responsible Member of the Editorial Board
I. Shinkai

Authors
S. Gobec M. Sako
N. Haider N. Sato
W. Holzer R. Sato
T. Ishikawa F. Seela
S. Ito U. Urleb
D. Kikelj S. von Angerer
M. Matsumoto Y. Yamamoto
F. Ramzaeva M. Yoshifuji
H. Rosemeyer

2004
Georg Thieme Verlag
Stuttgart · New York

Includes bibliographical references and index.

Contents: category 2. Hetarenes and Related Ring Systems. v. 16. Six-Membered Hetarenes with Two Identical Heteroatoms / volume editor, Y. Yamamoto
QD262.S35 2000
547'.2–dc21
00-061560

(Houben–Weyl methods of organic chemistry)

British Library Cataloguing in Publication Data
Category 2: Hetarenes and Related Ring Systems: Vol. 16: Six-Membered Hetarenes with Two Identical Heteroatoms. – (Houben–Weyl methods of organic chemistry)
1. Organic compounds – Synthesis. 2. Organic compounds – Laboratory manuals
I. Yamamoto, Y., II. Gobec, S.
547.2

ISBN 3-13-118661-5
(Georg Thieme Verlag, Stuttgart)
ISBN 0-86577-955-4
(Thieme New York)
Preface

As our understanding of the natural world increases, we begin to understand complex phenomena at molecular levels. This level of understanding allows for the design of molecular entities for functions ranging from material science to biology. Such design requires synthesis and, as the structures increase in complexity as a necessity for specificity, puts increasing demands on the level of sophistication of the synthetic methods. Such needs stimulate the improvement of existing methods and, more importantly, the development of new methods. As scientists confront the synthetic problems posed by the molecular targets, they require access to a source of reliable synthetic information. Thus, the need for a new, comprehensive, and critical treatment of synthetic chemistry has become apparent. To meet this challenge, an entirely new edition of the esteemed reference work *Houben–Weyl Methods of Organic Chemistry* will be published starting in the year 2000.

To reflect the new broader need and focus, this new edition has a new title, *Science of Synthesis, Houben–Weyl Methods of Molecular Transformations*. *Science of Synthesis* will benefit from more than 90 years of experience and will continue the tradition of excellence in publishing synthetic chemistry reference works. *Science of Synthesis* will be a balanced and critical reference work produced by the collaborative efforts of chemists, from both industry and academia, selected by the editorial board. All published results from journals, books, and patent literature from the early 1800s until the year of publication will be considered by our authors, who are among the leading experts in their field. The 48 volumes of *Science of Synthesis* will provide chemists with the most reliable methods to solve their synthesis problems. *Science of Synthesis* will be updated periodically and will become a prime source of information for chemists in the 21st century.

Science of Synthesis will be organized in a logical hierarchical system based on the target molecule to be synthesized. The critical coverage of methods will be supported by information intended to help the user choose the most suitable method for their application, thus providing a strong foundation from which to develop a successful synthetic route. Within each category of product, illuminating background information such as history, nomenclature, structure, stability, reactivity, properties, safety, and environmental aspects will be discussed along with a detailed selection of reliable methods. Each method and variation will be accompanied by reaction schemes, tables of examples, experimental procedures, and a background discussion of the scope and limitations of the reaction described.

The policy of the editorial board is to make *Science of Synthesis* the ultimate tool for the synthetic chemist in the 21st century.

We would like to thank all of our authors for submitting contributions of such outstanding quality, and, also for the dedication and commitment they have shown throughout the entire editorial process.

The Editorial Board

D. Bellus (Basel, Switzerland) P. J. Reider (New Jersey, USA)
E. N. Jacobsen (Cambridge, USA) E. Schaumann (Clausthal-Zellerfeld, Germany)
S. V. Ley (Cambridge, UK) I. Shinkai (Tsukuba, Japan)
R. Noyori (Nagoya, Japan) E. J. Thomas (Manchester, UK)
M. Regitz (Kaiserslautern, Germany) B. M. Trost (Stanford, USA)

October 2000
Volume Editor’s Preface

This volume of *Science of Synthesis* is concerned with six-membered hetarenes containing two identical heteroatoms, i.e. oxygen, sulfur, selenium, tellurium, nitrogen, or phosphorus ring atoms. As with other volumes of *Science of Synthesis*, it is the synthesis of these hetarenes which is the dominant topic; their chemistry is covered only when relevant to their synthesis, or in a few instances where it leads to generally useful synthetic procedures.

The chemistry of six-membered hetarenes with two nitrogen atoms (pyridazine, cinnoline, phthalazine, pyrimidine, quinazoline, pyrazine, quinoxaline, phenazine, purine, pyridodiazines, pteridine, and related compounds) has been studied for a very long time. Accordingly, many of the references included in this volume date back to fairly early work, although the literature coverage continues up to 2002. Some of the six-membered hetarenes with two nitrogen atoms retain considerable industrial interest up to the present day, because of their biological activities and of their use as dyes. Pyrimidine and purine are essential for any form of life. Six-membered hetarenes with two sulfur or selenium atoms, especially thianthrene and selenanthrene and their analogues, are being investigated for their organoconducting properties. Therefore, the compound classes covered in this volume are of considerable contemporary interest and are likely to remain so for many years to come.

The structure of this volume follows that established in the other hetarene volumes of *Science of Synthesis*, i.e. the material is organized into methods for the synthesis of the product class in question, with each method usually including a discussion of the scope of the method, examples, and an experimental procedure. The product classes are ordered according to the *Science of Synthesis* guidelines, with the methods and variations within each product class following the sequence: synthesis by ring-closure reactions, synthesis by ring transformation, aromatization, and synthesis by substituent modification.

Finally, I should like to thank everyone who has contributed to this volume, in particular Dr. Joe P. Richmond for his help at the planning stage, and the authors for all their hard work in putting it together. Finally, I gratefully acknowledge the unstinting efforts of Dr. M. Fiona Shortt de Hernandez and her team at Thieme for their support, patience, and hard work during the course of this project.

Volume Editor

Sendai, November 2003

Yoshinori Yamamoto
Volume 16:
Six-Membered Hetarenes with Two Identical Heteroatoms

Introduction
Y. Yamamoto ... 1

16.1 Product Class 1: 1,2-Dioxins and Benzo- and Dibenzo-Fused Derivatives
M. Matsumoto ... 13

16.2 Product Class 2: 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives
M. Matsumoto ... 15

16.3 Product Class 3: 1,2-Dithiins
R. Sato ... 39

16.4 Product Class 4: 1,4-Dithiins
R. Sato ... 57

16.5 Product Class 5: 1,2-Diselenins
R. Sato ... 95

16.6 Product Class 6: 1,4-Diselenins
R. Sato ... 103

16.7 Product Class 7: 1,4-Ditellurins
R. Sato ... 119

16.8 Product Class 8: Pyridazines
N. Haider and W. Holzer .. 125

16.9 Product Class 9: Cinnolines
N. Haider and W. Holzer .. 251

16.10 Product Class 10: Phthalazines
N. Haider and W. Holzer .. 315

16.11 Product Class 11: Pyridazino[1,2-a]pyridazines
N. Haider and W. Holzer .. 373

16.12 Product Class 12: Pyrimidines
S. von Angerer ... 379

16.13 Product Class 13: Quinazolines
D. Kikelj .. 573

16.14 Product Class 14: Pyrazines
N. Sato ... 751
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Product Class</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.15</td>
<td>Quinoxalines</td>
<td>S. Gobec and U. Urleb</td>
<td>845</td>
</tr>
<tr>
<td>16.16</td>
<td>Phenazines</td>
<td>U. Urleb and S. Gobec</td>
<td>913</td>
</tr>
<tr>
<td>16.17</td>
<td>Purines</td>
<td>F. Seela, N. Ramzaeva, and H. Rosemeyer</td>
<td>945</td>
</tr>
<tr>
<td>16.18</td>
<td>Pyridopyridazines</td>
<td>M. Sako</td>
<td>1109</td>
</tr>
<tr>
<td>16.19</td>
<td>Pyridopyrimidines</td>
<td>M. Sako</td>
<td>1155</td>
</tr>
<tr>
<td>16.20</td>
<td>Pyridopyrazines</td>
<td>M. Sako</td>
<td>1269</td>
</tr>
<tr>
<td>16.21</td>
<td>Pteridines and Related Structures</td>
<td>T. Ishikawa</td>
<td>1291</td>
</tr>
<tr>
<td>16.22</td>
<td>Other Diazinodiazines</td>
<td>T. Ishikawa</td>
<td>1337</td>
</tr>
<tr>
<td>16.23</td>
<td>Diphosphinines</td>
<td>M. Yoshifuji and S. Ito</td>
<td>1399</td>
</tr>
</tbody>
</table>

Keyword Index | 1411
Author Index | 1465
Abbreviations | 1563
Table of Contents

Introduction
Y. Yamamoto

Introduction .. 1

16.1 Product Class 1: 1,2-Dioxins and Benzo- and Dibenzo-Fused Derivatives
M. Matsumoto

16.1 Product Class 1: 1,2-Dioxins and Benzo- and Dibenzo-Fused Derivatives 13

16.2 Product Class 2: 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives
M. Matsumoto

16.2 Product Class 2: 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives 15

16.2.1 Synthesis by Ring-Closure Reactions ... 18
16.2.1.1 By Formation of Two O—C Bonds ... 18
16.2.1.1.1 Fragments O—C—C—O and C—C ... 18
16.2.1.1.1 Method 1: 1,4-Benzodioxins by Condensation of Benzene-1,2-diols with an Unsaturated Dielectrophile ... 18
16.2.1.1.1 Method 2: Dibenzo[b,e][1,4]dioxins by Base-Induced Coupling of Benzene-1,2-diols with Activated Chlorobenzenes ... 19
16.2.1.1.1 Method 3: Dibenzo[b,e][1,4]dioxins from Benzene-1,2-diols and 1,2-Dichlorobenzenes Activated by Complexation with Metals ... 20
16.2.1.1.2 Fragments O—C—C and O—C—C ... 21
16.2.1.1.2 Method 1: Dibenzo[b,e][1,4]dioxins from 2-(2-Halophenoxy)phenolates 22
16.2.1.2 By Formation of One O—C Bond ... 22
16.2.1.2.1 Fragment O—C—C—O—C—C ... 22
16.2.1.2.1 Method 1: Dibenzo[b,e][1,4]dioxins from 2-(2-Halophenoxy)phenolates 22
16.2.2 Aromatization ... 23
16.2.2.1 Method 1: 1,4-Dioxins by Elimination of Halogens or Hydrogen Halides from Polyhalo-1,4-dioxanes ... 23
16.2.2.2 Method 2: 1,4-Dioxins by Elimination of Methanol from 2,5-Dimethoxy-1,4-dioxanes ... 24
16.2.2.3 Method 3: 1,4-Benzodioxins by Elimination of Bromine or Hydrogen Bromide from 2,3-Dibromo-2,3-dihydro-1,4-benzodioxins ... 25
16.2.2.4 Method 4: 1,4-Benzodioxins by Elimination of Water from 2-Hydroxy-2,3-dihydro-1,4-benzodioxins ... 26
16.2.3 Synthesis by Substituent Modification .. 27
 16.2.3.1 Substitution of Existing Substituents .. 27
 16.2.3.1.1 Of Hydrogen ... 27
 Method 1: Friedel–Crafts Acylation of 1,4-Benzodioxins Bearing an Electron-Withdrawing Substituent at the 2-Position 27
 Method 2: Friedel–Crafts Acylation of Dibenzo[b,e][1,4]dioxins 27
 Method 3: Lewis Acid Catalyzed Acylation of 2-(Trimethylsilyl)-1,4-benzodioxin ... 28
 Method 4: Polyhalogenated Dibenzo[b,e][1,4]dioxins by Direct Halogenation of Dibenzo[b,e][1,4]dioxins with Chlorine or Bromine .. 28
 16.2.3.1.4 Variation 1: Halogenation with Inorganic Chlorides or Bromides 29
 Method 5: Nitration of Dibenzo[b,e][1,4]dioxins ... 30
 16.2.3.1.5 Of Metals ... 30
 Method 1: 2-Substituted 1,4-Benzodioxins from 2-Lithio-1,4-benzodioxins 30
 Method 2: 1-Monosubstituted and 1,9-Disubstituted Dibenzo[b,e][1,4]-dioxins from 1-Lithio- or 1,9-Dilithiodibenzo[b,e][1,4]dioxin 32
 Method 3: 5-Substituted 1,4-Benzodioxins via Lithiation of η^1-Chromium(0) Complexes of 1,4-Benzodioxins 33
 Method 4: Metal-Catalyzed Coupling of 1,4-Benzodioxin-2-ylmagnesium Bromide with Halides .. 33
 16.2.3.1.6 Of Heteroatoms ... 33
 Method 1: Metal-Catalyzed Coupling of 2-Bromo-1,4-benzodioxin with Organometallics ... 33
 Method 2: Sandmeyer Reaction of Polychlorodibenzo[b,e][1,4]-dioxinamines ... 34
 16.2.3.2 Modification of Substituents ... 35
 Method 1: Dibenzo[b,e][1,4]dioxinamines by Reduction of Nitrobenzo[b,e][1,4]dioxins ... 35
 Method 2: 1,4-Dioxins by Isomerization of Exocyclic Double Bonds of Substituted 1,4-Dioxanes ... 35
 Method 3: Diels–Alder Addition of 2,3-Bis(methylene)-2,3-dihydro-1,4-dioxin with Dienophiles .. 36

16.3 Product Class 3: 1,2-Dithiins
R. Sato

16.3 Product Class 3: 1,2-Dithiins .. 39
16.3.1 Synthesis by Ring-Closure Reactions .. 41
 16.3.1.1 By Formation of One $S-S$ Bond ... 41
 Method 1: Ring Closure of Butan-1,3-diene-1,4-dithiol 41
 Variation 1: Synthesis of 1,2-Dithiin .. 41
 Variation 2: Synthesis of a Substituted 1,2-Dithiin .. 41
 Variation 3: Synthesis of 1,2-Dithiin-3,6-diyldimethanol 42
<table>
<thead>
<tr>
<th>Section</th>
<th>Method</th>
<th>Synthesis Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.1.1</td>
<td>Variation 4</td>
<td>Synthesis of Thiarubrine A</td>
</tr>
<tr>
<td>16.3.1.2</td>
<td>Method 2</td>
<td>Synthesis from 1,1'Binaphthalene-2,2'-dithiol</td>
</tr>
<tr>
<td>16.3.1.3</td>
<td>Method 3</td>
<td>Synthesis from Biphenyl-2,2',6,6'-tetrol</td>
</tr>
<tr>
<td>16.3.1.4</td>
<td>Method 4</td>
<td>Ring Closure with Sulfur Monochloride</td>
</tr>
<tr>
<td>16.3.1.5</td>
<td>Method 5</td>
<td>Synthesis via the Thermolysis or Photolysis of 1,9-Bis(methylsulfanyl) dibenzo[b,d]thiophene</td>
</tr>
<tr>
<td>16.3.1.6</td>
<td>Method 6</td>
<td>Synthesis of 1,4-Dihydro-2,3-benzodithiin</td>
</tr>
<tr>
<td>16.3.1.7</td>
<td>Method 7</td>
<td>Synthesis of 1,4-Diphenyl-1,4-dihydro-2,3-benzodithiin</td>
</tr>
</tbody>
</table>

16.3.2 Synthesis by Ring Transformation

<table>
<thead>
<tr>
<th>Method</th>
<th>Synthesis Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.2.1</td>
<td>Method 1</td>
</tr>
<tr>
<td>16.3.2.2</td>
<td>Method 2</td>
</tr>
</tbody>
</table>

16.3.3 Synthesis by Other Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Synthesis Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.3.1</td>
<td>Method 1</td>
</tr>
</tbody>
</table>

16.3.4 Synthesis by Substituent Modification

<table>
<thead>
<tr>
<th>Method</th>
<th>Synthesis Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.4.1</td>
<td>Method 1</td>
</tr>
<tr>
<td>16.3.4.2</td>
<td>Method 2</td>
</tr>
<tr>
<td>16.3.4.2.1</td>
<td>Method 1</td>
</tr>
<tr>
<td>16.3.4.2.2</td>
<td>Method 2</td>
</tr>
<tr>
<td>16.3.4.2.2.1</td>
<td>Variation 1</td>
</tr>
<tr>
<td>16.3.4.2.2.2</td>
<td>Variation 2</td>
</tr>
</tbody>
</table>

16.4 Product Class 4: 1,4-Dithiins

<table>
<thead>
<tr>
<th>Method</th>
<th>Synthesis Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4.1</td>
<td>Synthesis by Ring-Closure Reactions</td>
</tr>
<tr>
<td>16.4.1.1</td>
<td>By Formation of Four S—C Bonds</td>
</tr>
<tr>
<td>16.4.1.1.1</td>
<td>Fragments C—C, C—C and Two S Fragments</td>
</tr>
<tr>
<td>16.4.1.1.1.1</td>
<td>Method 1</td>
</tr>
<tr>
<td>16.4.1.1.1.2</td>
<td>Method 2</td>
</tr>
<tr>
<td>16.4.1.1.1.3</td>
<td>Method 3</td>
</tr>
<tr>
<td>16.4.1.1.1.4</td>
<td>Method 4</td>
</tr>
<tr>
<td>16.4.1.1.5</td>
<td>Method 5</td>
</tr>
<tr>
<td>16.4.1.1.5.1</td>
<td>Variation 1</td>
</tr>
<tr>
<td>16.4.1.1.6</td>
<td>Method 6</td>
</tr>
<tr>
<td>16.4.1.2</td>
<td>By Formation of Two S—C Bonds and One C—C Bond</td>
</tr>
<tr>
<td>16.4.1.2.1</td>
<td>Fragments S—C, S—C, and C—C</td>
</tr>
</tbody>
</table>
16.4.1.1 Method 1: Formation of 2,3-Diphenyl-1,4-dithin 67
16.4.1.3 By Formation of Two S—C Bonds .. 68
16.4.1.3.1 Fragments C—C—S—C—C and S ... 68
16.4.1.3.1.1 Method 1: From Bis(3-bromoquinolin-4-yl) Sulfide with Sodium Sulfide 68
16.4.1.3.1.2 Method 2: From Bis(2-oxoalkyl) Sulfides 68
16.4.1.3.1.3 Method 3: From Dialkynyl Sulfides with Sodium Sulfide 69
16.4.1.3.1.4 Method 4: From Bis(2-lithioaryl) Sulfides 70
16.4.1.3.1.5 Method 5: By Arylsulfanyl Migration ... 70
16.4.1.3.2 Fragments S—C—C—S and C—C .. 71
16.4.1.3.2.1 Method 1: From Benzopentathiepins and Arenes 71
16.4.1.3.2.2 Method 2: From 1,2-Dithiones ... 71
16.4.1.3.2.3 Method 3: From 1,2-Dithiones and Alkynes 72
16.4.1.3.2.4 Method 4: From 1,2-Dithiones and Alkenes 73
16.4.1.3.2.5 Method 5: From 1,2-Dihalo Compounds 74
16.4.1.3.2.6 Method 6: From Arene-1,2-dithiols and Substituted Acetyl Halides 76
16.4.1.3.3 Fragments S—C—C and S—C—C .. 77
16.4.1.3.3.1 Method 1: From 4,5-Disulfanyl-3H-1,2-dithiole-3-thione 77
16.4.1.3.3.2 Method 2: From Substituted Sodium Thiosulfates 77
16.4.1.3.3.3 Method 3: From Two Halosulfanylarenes 78
16.4.1.3.3.4 Method 4: Pyrolysis of an Isoxazole .. 80
16.4.1.3.3.5 Method 5: Photolysis and Thermolysis of Benzothiodiazoles 81
16.4.1.4 By Formation of One S—C and One C—C Bond 81
16.4.1.4.1 Fragments C—C—S—C and C—S ... 81
16.4.1.4.1.1 Method 1: From Substituted Propynyl Sulfides 81
16.4.1.5 By Formation of Two C—C Bonds ... 82
16.4.1.5.1 Fragments C—S—C and C—S—C ... 82
16.4.1.5.1.1 Method 1: Photolysis of Mesoionic Compounds 82
16.4.1.6 By Formation of One S—C Bond ... 83
16.4.1.6.1 Fragment S—C—C—S—C ... 83
16.4.1.6.1.1 Method 1: From 1-Ethyl-1,2-diphenyldisulfan-1-ium 83
16.4.2 Synthesis by Ring Transformation ... 83
16.4.2.1 By Ring Enlargement ... 83
16.4.2.1.1 Method 1: From 1,2-Benzodithiole Sulfoxide 83
16.4.2.1.2 Method 2: From a Bisfulvene Tetraester .. 84
16.4.2.2 By Ring Contraction .. 84
16.4.2.2.1 Method 1: By Photolysis of 1,2,5,6-Tetrathiocins 84
16.4.3 Aromatization .. 85
16.4.3.1 Method 1: Oxidation of 1,4-Dithianes .. 85
16.4.3.2 Method 2: Aromatization Using 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone 86