Edited by
Friedlieb Pfannkuch
and Laura Suter-Dick

Predictive Toxicology
Previous Volumes of this Series:

Kirchmair, Johannes (Ed.)

Drug Metabolism Prediction
2014
ISBN: 978-3-527-33566-4
Vol. 63

Vela, José Miguel / Maldonado, Rafael / Hamon, Michel (Eds.)

In vivo Models for Drug Discovery
2014
ISBN: 978-3-527-33328-8
Vol. 62

Liras, Spiros / Bell, Andrew S. (Eds.)

Phosphodiesterases and Their Inhibitors
2014
ISBN: 978-3-527-33219-9
Vol. 61

Hanessian, Stephen (Ed.)

Natural Products in Medicinal Chemistry
2014
ISBN: 978-3-527-33218-2
Vol. 60

Lackey, Karen / Roth, Bruce (Eds.)

Medicinal Chemistry Approaches to Personalized Medicine
2013
ISBN: 978-3-527-33394-3
Vol. 59

Brown, Nathan (Ed.)

Scaffold Hopping in Medicinal Chemistry
2013
ISBN: 978-3-527-33364-6
Vol. 58

Hoffmann, Rémy / Gohier, Arnaud / Pospislí, Pavel (Eds.)

Data Mining in Drug Discovery
2013
ISBN: 978-3-527-32984-7
Vol. 57

Dömling, Alexander (Ed.)

Protein-Protein Interactions in Drug Discovery
2013
ISBN: 978-3-527-33107-9
Vol. 56

Kalgutkar, Amit S. / Dalvie, Deepak / Obach, R. Scott / Smith, Dennis A.

Reactive Drug Metabolites
2012
ISBN: 978-3-527-33085-0
Vol. 55

Brown, Nathan (Ed.)

Bioisosteres in Medicinal Chemistry
2012
ISBN: 978-3-527-33015-7
Vol. 54
Edited by Friedlieb Pfannkuch and Laura Suter-Dick

Predictive Toxicology

From Vision to Reality
Series Editors

Prof. Dr. Raimund Mannhold
Rosenweg 7
40489 Düsseldorf
Germany
mannhold@uni-duesseldorf.de

Prof. Dr. Hugo Kubinyi
Donnersbergstrasse 9
67256 Weisenheim am Sand
Germany
kubinyi@t-online.de

Prof. Dr. Gerd Folkers
Collegium Helveticum
STW/ETH Zurich
8092 Zurich
Switzerland
folkers@collegium.ethz.ch

Volume Editors

Prof. Dr. Friedlieb Pfannkuch
Steingrubenweg 160
4125 Riehen
Switzerland

Prof. Dr. Laura Suter-Dick
Fachhochschule Nordwestschweiz
Gründenstrasse 40
4132 Muttenz
Switzerland

Cover has been created with pictures from Fotolia, Getty (Photodisc), Scorpius, Wikipedia, Schulz.

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33608-1
ePDF ISBN: 978-3-527-67419-0
ePub ISBN: 978-3-527-67420-6
Mobi ISBN: 978-3-527-67421-3
oBook ISBN: 978-3-527-67418-3

Cover Design Grafik-Design Schulz, Fußgönheim, Germany
Typesetting Thomson Digital, Noida, India
Printing and Binding Markono Print Media Pte Ltd, Singapore

Printed on acid-free paper
Contents

List of Contributors XV
Preface XXI
A Personal Foreword XXIII

1 Introduction to Predictive Toxicology Tools and Methods 1
Laura Suter-Dick and Friedlieb Pfannkuch
1.1 Computational Tools and Bioinformatics 1
1.1.1 In Silico Prediction Tools 1
1.1.2 Bioinformatics 2
1.2 Omics Technologies 2
1.2.1 Toxicogenomics (Transcriptomics) 2
1.2.2 Proteomics 3
1.2.3 Metabolomics 3
1.3 Data Interpretation and Knowledge Management 4
1.4 Biomarker Development 4
1.5 Advanced In Vitro Systems and Stem Cell Research 4
1.5.1 Advanced In Vitro Testing 4
1.5.2 Stem Cell Research 5
1.6 Immunogenicity 6
1.7 Integration and Validation 7
1.7.1 Use of Omics for Toxicology Testing 7
1.7.2 Integration of “New” Technologies into Risk Assessment 7
1.7.3 Use of Human-Derived Cellular Systems 8
1.7.4 “General” Acceptance – Translation into Guidelines 8
1.8 Research Initiative/Collaborations 9
1.9 Concluding Remarks 9
References 9

2 In Silico Toxicology – Current Approaches and Future Perspectives to Predict Toxic Effects with Computational Tools 11
Thomas Steger-Hartmann
2.1 Introduction 11
2.2 Prediction of Hazard 11
 2.2.1 Definition of Hazard and Its Use 11
 2.2.2 Prediction of Mutagenicity 12
 2.2.3 Prediction of Phospholipidosis 13
 2.2.4 Prediction of Carcinogenicity 14
 2.2.5 Prediction of Skin Sensitization 14
 2.2.6 Prediction of Skin and Eye Irritation 16
 2.2.7 Approaches to Systemic Toxicity Prediction 17
 2.2.7.1 The Cramer Classes 17
 2.2.7.2 Predicting Toxic Doses of Drugs 18
 2.2.7.3 Predicting Organ Toxicity 18
 2.2.7.4 Adverse Outcome Pathways and Potential for Prediction 20
 2.3 Prediction of Risk 21
 2.3.1 Risk Definition and Some Basic Considerations 21
 2.3.2 Data Availability 23
 2.3.3 Database Structure and Data Curation 24
 2.3.4 Approaches to Model and Predict Risk 26
 2.4 Thoughts on Validation 27
 2.5 Conclusions and Outlook 28

References 28

3 In Silico Approaches: Data Management – Bioinformatics 33
 Arnd Brandenburg, Hans Gmuender, and Timo Wittenberger

 3.1 Introduction 33
 3.2 Experimental Setup and Statistical Power 34
 3.3 Properties of Different Omics Data 35
 3.3.1 Next-Generation Sequencing Data 35
 3.3.2 DNA Methylation Data 36
 3.3.3 miRNA Data 36
 3.3.4 CNV and SNP Data 36
 3.3.5 ChIP-seq Data 37
 3.3.6 Gene Expression Microarray Data (Affymetrix) 37
 3.3.7 Mass Spectrometry Data 38
 3.3.8 Missing Values and Zero Values 40
 3.3.9 Data Normalization 40
 3.4 Statistical Methods 41
 3.4.1 Data Overviews 41
 3.4.2 Null Hypothesis/Type I and Type II Errors 42
 3.4.3 Multiple Testing Methods 42
 3.4.4 Statistical Tests 43
 3.4.5 Linear Models and Linear Mixed Models 43
 3.5 Prediction and Classification 44
 3.5.1 Overview 44
 3.5.2 Generating a Reference Compendium of Compounds 45
 3.5.3 Cross-Validation 46
 3.5.4 Selection Bias 47
4 Role of Modeling and Simulation in Toxicology Prediction 53
Antje-Christine Walz, Hans Peter Grimm, Christophe Meille, Antonello Caruso, Neil Parrott, and Thierry Lavé
4.1 Introduction 53
4.2 The Need to Bring PK and PD in Predictive Models Together 54
4.2.1 Physiologically Based Pharmacokinetic Modeling 54
4.2.2 Mathematical (PBPK, PK/PD) Modeling 55
4.2.3 Predictive Tools 55
4.3 Methodological Aspects and Concepts 56
4.3.1 “Cascading” Drug Effects 56
4.3.2 Linking Exposure and Effect 57
4.3.3 Receptor Occupancy/Enzyme Inhibition 57
4.3.4 Transduction into In Vivo Response 57
4.3.4.1 Indirect Response Models 58
4.3.4.2 Transit Compartment Models 58
4.3.5 Disease Modeling 59
4.4 Application During Lead Optimization 60
4.4.1 Example 1: PK/PD Modeling for Identifying the Therapeutic Window between an Efficacy and a Safety Response 60
4.5 Application During Clinical Candidate Selection 62
4.5.1 Example 2: Translational PK/PD Modeling to Support Go/No Go Decisions 63
4.6 Entry-into-Human Preparation and Translational PK/PD Modeling 65
4.6.1 Selection of Safe and Pharmacologically Active Dose for Anticancer Drugs 65
4.6.1.1 Example 3 65
4.6.1.2 Example 4 67
4.6.2 PK/PD for Toxicology Study Design and Evaluation 67
4.6.2.1 Example 5 67
4.6.2.2 Example 6 68
4.6.2.3 Example 7 68
4.7 Justification of Starting Dose, Calculation of Safety Margins, and Support of Phase I Clinical Trial Design 69
4.8 Outlook and Conclusions 70
References 71

5 Genomic Applications for Assessing Toxicities of Liver and Kidney Injury 73
Philip Hewitt and Esther Johann
5.1 Introduction 73
5.1.1 Toxicogenomics in Drug Development 73
5.2 Toxicogenomic Approaches 75
5.2.1 High-Throughput Expression Profiles and DNA Microarrays 75
5.2.2 Data Analysis 76
5.3 Specific Applications of Toxicogenomics 77
5.3.1 Mechanistic Toxicogenomics and Risk Assessment 77
5.3.2 Toxicogenomic Profiling of Hepatotoxicity 78
5.3.2.1 Hepatotoxicity in Drug Development 78
5.3.3 Functional and Structural Properties of the Liver 78
5.3.4 Liver Morphology 79
5.3.5 Cell Types 80
5.3.6 Functional Gradients 80
5.4 Toxicogenomic Applications for the Better Understanding of Hepatotoxicity 80
5.4.1 Mechanistic Toxicology 80
5.4.2 Class Identification 82
5.4.3 Predictive Toxicology 83
5.4.4 In Vitro Classifiers of Hepatotoxicity 84
5.4.5 Biomarker Identification 84
5.5 Toxicogenomic Profiling of Nephrotoxicity 86
5.5.1 Toxicogenomic Approaches in Nephrotoxicity 86
5.5.2 Finding Genes that Matter in AKI 87
5.5.3 Searching for New Biomarkers of Kidney Injury 88
5.6 Limitations of Toxicogenomics 90
5.6.1 Idiosyncrasies 90
5.6.2 Epigenetics 91
5.7 Conclusions 91
References 92

6 Use of Toxicogenomics for Mechanistic Characterization of Hepatocarcinogens in Shorter Term Studies 97
Heidrun Ellinger-Ziegelbauer
6.1 Introduction 97
6.1.1 Rodent Carcinogenicity Testing 97
6.1.2 Classes of Carcinogens 99
6.2 Toxicogenomics 99
6.2.1 Mechanistic Toxicogenomic Analysis after Short-Term Treatment with Rodent Hepatocarcinogens 99
6.2.2 Approaches for Prediction of Potential Hepatocarcinogens Based on Gene Expression Profiling 104
6.2.3 Recent Developments: Transcriptional Benchmark Dose Modeling Based on Functional Analyses 119
6.2.4 Recent Opportunities: Publicly Available Data 120
6.3 Conclusions and Outlook 123
References 123
7 Discovery and Application of Novel Biomarkers 129
Timothy W. Gant, Emma L. Marczylo, and Martin O. Leonard

7.1 Introduction 129
7.1.1 New Technologies Give Rise to Novel Opportunities for Biomarker Discovery 130
7.2 Novel RNA Biomarkers 131
7.2.1 The Complex RNA Biomarker in Cancer 131
7.2.2 The Complex RNA Biomarker in Toxicology 133
7.2.3 Connectivity Mapping with the Complex RNA Biomarker for Hazard Identification 134
7.2.4 miRNA Biomarkers 135
7.3 DNA as a Biomarker 138
7.3.1 DNA Polymorphisms as Future Biomarkers of Disease and Xenobiotic Susceptibility 138
7.3.2 DNA and Protein Adduct Biomarkers 140
7.3.3 Epigenetic Biomarkers 140
7.4 Novel Biomarkers: Beyond Nucleotide-Based Discovery 143
7.5 Summary and Outlook 145
References 146

8 Predictive Toxicology: Genetics, Genomics, Epigenetics, and Next-Generation Sequencing in Toxicology 151
Tobias Heckel and Laura Suter-Dick

8.1 Introduction 151
8.2 Technological Advances 152
8.3 Applications in Toxicology 154
8.3.1 Genome Sequencing and Sequence Level Comparisons 154
8.3.2 Genotype and Metabolism 157
8.3.3 Mechanistic Toxicology and Toxicogenomics 160
8.3.4 Epigenetic Changes and miRNAs 162
8.4 Summary and Outlook 164
References 165

9 Biomarkers as Tools for Predictive Safety Assessment: Novel Markers of Drug-Induced Kidney Injury 171
Angela Mally

9.1 Need and Search for Novel Biomarkers of Kidney Injury 171
9.2 Urinary Biomarkers of Drug-Induced Kidney Injury 172
9.2.1 Structure and Function of Novel Urinary Biomarkers 172
9.2.1.1 Kidney Injury Molecule-1 172
9.2.1.2 Clusterin 174
9.2.1.3 Cystatin C 175
9.2.1.4 β2-Microglobulin 175
9.2.1.5 Liver-Type Fatty Acid Binding Protein 175
9.2.1.6 Neutrophil Gelatinase-Associated Lipocalin 176
11.3.5 Future Directions: ADME Studies and Future Explorative Research 231
11.3.5.1 Absorption and Distribution 231
11.3.5.2 Metabolism 232
11.3.5.3 Harmonization and Validation 232
11.3.5.4 Future Explorative Research 234
References 234

12 Predictive Method Development: Challenges for Cosmetics and Genotoxicity as a Case Study 241
Gladys Ouédraogo, Fabrice Nesslany, Sophie Simar, Smail Talahari, Doris Lagache, Eric Vercauteren, Lauren Nakab, Astrid Mayoux, Brigitte Faquet, and Nicole Flamand

12.1 Introduction 241
12.2 The Toolbox of Predictive Methods 243
12.2.1 In Silico Tools 243
12.2.2 Biochemical (In Chemico) Assays 244
12.2.3 In Vitro 2D Assays 245
12.2.4 Organotypic Models 246
12.3 Genotoxicity as a Case Study 246
12.3.1 Materials and Methods 248
12.3.1.1 Episkin 248
12.3.1.2 RHE 249
12.3.1.3 TK6 Cells 249
12.3.1.4 Episkin + TK6 Cells Coculture 250
12.3.2 Chemicals 250
12.3.3 Treatment Schedules 250
12.3.3.1 Episkin + TK6 Cells Coculture 250
12.3.3.2 RHE 254
12.3.3.3 Micronucleus Assay 255
12.3.3.4 In Vitro Comet Assay Protocol 256
12.3.3.5 Statistical Analysis 257
12.3.4 Results 257
12.3.4.1 In Vitro and In Vivo Genotoxins 257
12.3.4.2 Non-DNA-Reactive Chemicals (Including Nongenotoxic Carcinogens) That Give Negative Results in the In Vitro Mammalian Cell Genotoxicity Tests 263
12.3.4.3 Non-DNA-Reactive Chemicals (Including Nongenotoxic Carcinogens) That Have Been Reported to Induce Positive Results In Vitro (CA, MLA/TK), Often at High Concentrations or at High Levels of Cytotoxicity 264
12.3.4.4 Discussion 265
12.3.4.5 Conclusions 267
12.3.4.6 Related Initiatives 268
12.4 The Way Forward: Combining In Silico and In Vitro Tools 268
Abbreviations 269
References 270
13 Using Pluripotent Stem Cells and Their Progeny as an In Vitro Model to Assess (Developmental) Neurotoxicity 279
Lisa Hoelting, Marcel Leist, and Luc Stoppini

13.1 Introduction 279
13.2 Neurodevelopment In Vivo 281
13.3 Main Principle of In Vitro Test Systems to Model DNT 283
13.4 Requirements of an In Vitro Test System for DNT/NT 284
13.5 Modeling of Disease and Toxicant-Induced Damage 291
13.6 Using Stem Cells to Assess (Developmental) Neurotoxicity 296
13.6.1 Proliferation and Cell Death 296
13.6.2 Differentiation 297
13.6.3 Migration 298
13.6.4 Neuritogenesis 299
13.6.5 Synaptogenesis and Neuronal Excitability 300
13.6.6 Myelination 302
13.6.7 Neuroinflammation 302
13.7 Limitations 303

References 304

14 Stem Cell-Based Methods for Identifying Developmental Toxicity Potential 321
Jessica A. Palmer, Robert E. Burrier, Laura A. Egnash, and Elizabeth L.R. Donley

14.1 Introduction 321
14.2 Developmental Toxicity Screening: Past and Present 321
14.2.1 Definition and Scope of the Problem 321
14.2.2 Historical Strategies and the Need for New Human-Based Models 323
14.3 Pluripotent Stem Cells 324
14.3.1 Definition 324
14.3.2 Ethical Considerations 325
14.4 Metabolomics 326
14.4.1 Definition 326
14.4.2 Methods 326
14.4.3 Untargeted versus Targeted Metabolomic Approaches 328
14.4.4 Metabolomics in Toxicology 329
14.5 Stem Cell-Based In Vitro Screens for Developmental Toxicity Testing 331
14.5.1 Mouse Embryonic Stem Cell Test 331
14.5.2 Human Embryonic Stem Cell-Based Developmental Toxicity Tests 332
14.5.3 Combining Human Embryonic Stem Cells and Metabolomics: A Powerful Tool for Developmental Toxicity Testing 333
14.5.4 Drawbacks of In Vitro Models 337
14.6 Summary 338

References 339
Immunogenicity of Protein Therapeutics: Risk Assessment and Risk Mitigation

Harald Kropshofer

15.1 Introduction
15.2 The Central Role of CD4+ T Cells
15.3 Generation of T-Cell Epitopes
15.3.1 HLA Restriction
15.3.2 T-Cell Epitopes Controlling Immunogenicity
15.4 Tolerance to Therapeutic Drugs
15.5 Tool Set for Immunogenicity Risk Assessment
15.5.1 Epitope Determination
15.5.1.1 In Silico Screening
15.5.1.2 Peptide Elution
15.5.2 HLA Binding Assays
15.5.2.1 Competition Binding Assay
15.5.2.2 Real-Time Kinetic Measurements
15.5.3 T-Cell Activation Assays
15.5.3.1 Cytokine Release
15.5.3.2 T-Cell Proliferation
15.5.3.3 Tetramers
15.5.3.4 Naïve T-Cell Assay
15.5.3.5 T-Cell Stimulation by Whole Therapeutic Proteins
15.5.3.6 T-Cell Responses in Artificial Lymph Nodes
15.5.4 Mouse Models
15.5.4.1 HLA Transgenic Mice
15.5.4.2 Humanized Mouse Models
15.5.5 Case Studies
15.5.5.1 Translation of In Silico and In Vitro Data into Clinical Context
15.5.5.2 Link between HLA Haplotype and Immunogenicity: In Vivo versus In Vitro
15.6 Immunogenicity Risk Mitigation
15.6.1 Deimmunization
15.6.2 Tolerization
15.6.3 Clinical Control of Immunogenicity Risk Factors
15.7 The Integrated Strategy of Risk Minimization
15.8 Summary
References

Regulatory Aspects

Beatriz Silva Lima

16.1 The History of Medicines Regulations in Brief
16.1.1 United States of America
16.1.2 Europe
16.1.3 The International Conference on Harmonisation