Rotheiser

Joining of Plastics
Joining of Plastics
Handbook for Designers and Engineers

3rd Edition
Dedication

The author wishes to dedicate this book to his wife Gail, without whose help and encouragement it could not have been written – and to his family from whom he was absent so many hours.
Foreword

The Society of Plastics Engineers is pleased to sponsor *Joining of Plastics Handbook for Designers and Engineers* by Jordan I. Rotheiser. Mr. Rotheiser is a practicing plastics engineer and industrial designer, with more than 35 years of experience in the design of plastic products and a well respected member of SPE. He has held numerous seminars on assembly methods for plastics. His concise book will help the reader to determine the most cost-effective joining method for any given application.

SPE, through its Technical Volumes Committee, has long sponsored books on various aspects of plastics. Its involvement has ranged from identification of needed volumes and recruitment of authors to peer review and approval and publication of new books.

Technical competence pervades all SPE activities, not only in the publication of books, but also in other areas such as sponsorship of technical conferences and educational programs. In addition, the Society publishes periodicals including *Plastics Engineering, Polymer Engineering and Science, The Journal of Injection Molding Technology, Journal of Vinyl & Additive Technology* and *Polymer Composites* as well as conference proceedings and other publications, all of which are subject to rigorous technical review procedures.

The resource of some 36,000 practicing plastics engineers, scientists, and technologists has made SPE the largest organization of its type worldwide. Further information is available from the Society at 14 Fairfield Drive, Brookfield, Connecticut 06804, USA.

Michael A. Cappelletti
Executive Director
Society of Plastics Engineers

Technical Volumes Committee:
Robert C. Portnoy, Chairperson
Exxon Chemical Company

Reviewed by:
Dr. Billy Chow
IBM Corporation
When plastics first emerged as a viable material from which products could be manufactured, parts were designed and assembled in the same manner as those of existing materials. In time, the unique characteristics of this family of materials and the processes used in their manufacture became known. Creative designers and engineers soon recognized that plastic products could be marketed at substantially reduced price over those made of traditional materials.

A large portion of the reduced costs achieved through the use of plastics in the design of products is attained through a reduction in the number of parts required and the efficiency attained by many of the joining methods used with these materials. However, it is more complicated to design with plastics than with metals because the physical properties of plastics are significantly affected by changes in temperature and chemical environment within the normal range of usage. Furthermore, the available joining methods vary with the material and with the processing method used to create the parts.

In his design and engineering practice over the years, the author has observed that the relationship between the assembly methods, the materials, and the plastics manufacturing processes is generally neglected in the available references. Rather, it is left for the readers to discover through experience. In this book, the assembly method limitations for a given molding process can be found in Chapter 6, “Assembly Method Selection by Process.” Chapter 5, entitled “Assembly Method Selection by Material,” will provide the methods that can be used with a given plastic resin along with the acceptable fitment tolerances where available. The assembly processes also have size limitations, which are addressed in the respective chapters.

The theoretical ultimate in assembly method efficiency is the complete elimination of all joining operations in the creation of a one-piece product. Part reduction not only eliminates assembly labor, it reduces the purchasing, inspecting, warehousing, capital requirements, and piece part costs as well. While the ultimate goal is rarely achieved, a significant reduction in the number of parts used can often be attained. Most often, this objective is attempted by combining design elements in the process currently being used to manufacture the product. This sometimes results in a part so complicated that it is more expensive to make than the ones it replaced – with their assembly cost included. Many of the author’s most successful cost reduction programs have involved changes in both process and material, and he felt it important that this approach be included in the book. There is also a table to provide guidance to the range of product size attainable with each process.

The book also contains sections on the design of assemblies for disassembly and recycling. In addition, it provides the basic design for manufacturability fundamentals necessary to create parts which are not warped or distorted such that they cannot be efficiently assembled. Concurrent engineering practices are further developed to a level we refer to as the “holistic design of plastic parts.”
Following the design chapters, there are the assembly method chapters which basically constitute most of the balance of the book. Reference value is enhanced by a full chapter devoted to each of the 14 principal fastening and joining methods used to assemble plastic products today. This is very much a “how to” book, with a great deal of hard-to-find detailed design information and a large number of illustrations. It is intended to be both a handy desk reference and a design guide.

In the accelerated pace of today’s design environment, engineers rarely have the time to read at leisure. The author often finds himself reaching for a reference book and looking for the shortest path to the information needed. When he scans the table of contents of a book, he is looking to see if it is the kind of book he can use in that manner. He believes other engineers do the same, so this book is designed to accommodate the practice. In Chapter 1, “Rapid Guidelines for the Assembly of Plastics and the Efficient Use of This Handbook,” the reader can scan the various joining methods and determine which ones are most likely solutions for the problem at hand. He or she can then go on to read only those chapters. To further this objective, each of the assembly chapters begins with a list of the advantages and disadvantages of that particular assembly method. The author hopes this effort results in quick and appropriate joining solutions for his readers.

Highland Park, Illinois

Jordan Rotheiser
Acknowledgments

The author would like to first thank Glenn Beall of Glenn Beall Plastics Ltd., who introduced him to the world of plastics many years ago, who provided much reference material, and from whom he has learned a great deal about plastics over the years. He further wishes to express special appreciation to the following gentlemen who took the time and trouble to provide peer reviews of the chapters pertaining to their areas of special expertise:

Paul Burleigh (Forward Technology Industries, Inc.)
Mark Caldwell (Sonics and Materials, Inc.)
Jeffrey Franz (Branson Ultrasonics Corp.)
David A. Grewell (The Ohio State University)
Michael Luehr (Hermann Ultrasonics)
Herbert Mikeworth (Dukane Corp.)
Kishor Mehta (Bayer)
Jim Nordgren (3M)
Don Schewe (Forward Technology Industries, Inc.)
Dr. Zan Smith (Ticona)
Michael Topping (Ashland Chemical)

In addition to those listed in the reference section of this book, the author further wishes to express his appreciation to those who provided information and assistance in obtaining information used in this book:

J. Andrew Besuyen (Branson Plastic Joining)
John Bottelle (Emhart Helicoil)
Steve Chookazian (Ashland Chemical)
Ed Collins (Kamweld Products Co., Inc.)
Shawn Dalton (Service Tectonics Corp.)
Russell DiLuciano (V and A Process)
Jonathan Gorbold (Ameritherm Inc.)
Steve Ham (Steve Ham Plastics)
Peter Hebert (Forward Technology Industries, Inc.)
Steven A. Kocheny (Leister Technologies, LLC)
Junusz Lachowski (Sonics and Materials)
Tom Hoyer (Tom Hoyer and Associates)
Nicholas Nagurny (Montell North America)
Robert T. Ruffini (Fluxtrol Inc.)
Jerry Zybko (Leister Technologies, LLC)

Finally, the author wishes to express his appreciation to those whose work is listed in the reference section of this book and to the many others whose efforts in the plastics industry over the years have contributed to this book in anonymity.
Contents

1 Rapid Guidelines for Joining of Plastics and Efficient Use of This Handbook 1

1.1 Efficient Use of This Handbook ... 1

1.2 Rapid Guidelines for Assembly of Plastics .. 2

1.2.1 Adhesives (Chapter 7) ... 2

1.2.1.1 Liquids: Solvent-Based, Water-Based, and Anaerobic Adhesives 2

1.2.1.2 Mastics ... 3

1.2.1.3 Hot Melts .. 3

1.2.1.4 Pressure-Sensitive Adhesives .. 3

1.2.2 Fasteners and Inserts (Chapter 8) .. 3

1.2.3 Hinges (Chapter 9) .. 4

1.2.4 Hot Plate/Hot Die/Fusion and Hot Wire/Resistance Welding (Chapter 10) 4

1.2.5 Hot Gas Welding (Chapter 11) .. 5

1.2.6 Induction Welding (Chapter 12) ... 5

1.2.7 Insert Molding (Chapter 13) .. 5

1.2.8 Multipart Molding (Chapter 13) ... 6

1.2.9 Press Fits/Force Fits/Interference Fits/Shrink Fits (Chapter 14) 6

1.2.10 Solvent Joining (Chapter 7) .. 6

1.2.11 Snap Fits (Chapter 15) .. 7

1.2.12 Spin Welding (Chapter 16) .. 7

1.2.13 Staking/Swaging/Peening/Cold Heading/Cold Forming (Chapter 17) 7

1.2.14 Threads – Molded in (Chapter 18) ... 8

1.2.15 Threads – Tapped (Chapter 18) ... 8

1.2.16 Ultrasonic Welding (Chapter 19) .. 8

1.2.17 Vibration Welding (Chapter 20) ... 9

1.2.18 Welding with Lasers (Chapter 21) .. 9

1.3 Assembly Methods Selection by Size ... 9

1.4 Assembly Methods Selection by Joining Time .. 11

2 Designing for Efficient Assembly ... 12

2.1 Avoiding Part Distortion .. 12

2.2 Inside Corner Stress ... 13

2.3 Ribs and Bosses ... 14

2.4 Draft .. 15

2.5 Shrinkage .. 17

2.6 Fitments .. 19

2.6.1 Drawing Conventions for Plastic Assembly .. 19

2.6.2 Importance of Tolerancing for Assembly ... 21

2.6.3 Special Drafting Practices for Plastics ... 22

2.6.4 Procedure for Establishing Tolerances .. 26

2.7 Design Practices for Looser Tolerances in Plastics .. 27

2.7.1 Three-Point Location .. 28
2.7.2 Hollow Bosses .. 28
2.7.3 Crush Ribs .. 30
2.7.4 Flexible Ribs ... 31
2.7.5 Inside/Outside Fitments .. 32
2.7.6 Step Fitments .. 32
2.8 More Relaxed Tolerances for Large Parts ... 33
2.8.1 Drill in Place ... 33
2.8.2 Oversize Hole with Washer .. 33
2.8.3 Criss Cross Slots ... 33
2.8.4 Separation of Functions .. 34
2.8.5 Corner Clearance .. 34
2.9 Semidovetail Joint .. 35
2.10 Minimizing the Effect of Misalignment on Appearance 36
2.11 The Plastic Product Design for Assembly Checklist .. 36
2.12 Testing .. 36

3 Cost Reduction In Assembly ... 40
3.1 Introduction .. 40
3.2 The Micro Approach to Part Reduction ... 40
3.2.1 Combining Parts Through Materials .. 41
3.2.2 Combining Parts Through Processes ... 42
3.3 The Macro Approach to Part Reduction ... 43
3.3.1 Multiple Material Processing .. 47
3.3.2 Coextrusion ... 48
3.3.3 Coinjection Molding ... 49
3.3.4 Multipart or Two-Color Injection Molding .. 49
3.4 Elimination of Fasteners .. 49
3.4.1 Multiple Parts per Fastener ... 50
3.4.2 Press and Snap Fits ... 50
3.4.3 Integral Hinges .. 51
3.4.4 Combining Fastener Elimination Concepts .. 51
3.5 Holistic Design ... 53
3.5.1 The Overall Design Considerations .. 53
3.5.2 The Thread Design ... 54
3.5.3 The Processing Considerations ... 55
3.5.4 The Tooling Considerations .. 55
3.5.5 Execution .. 56
3.5.6 Toward Holistic Design .. 56

4 Design for Disassembly and Recycling .. 58
4.1 Introduction .. 58
4.2 Design for Disassembly ... 59
4.2.1 Reopenable Assemblies ... 59
4.2.2 Permanent Assemblies .. 63
4.3 Design for Recycling ... 64
4.3.1 Simplification .. 65
4.3.2 Assembly Method Selection ... 65