Advances in Delivery Science and Technology

Series Editor
Michael J. Rathbone

More information about this series at http://www.springer.com/series/8875
Subunit Vaccine Delivery
Preface

The objective of this book is to compile the concepts essential for the understanding of the pharmaceutical science and technology associated with the delivery of subunit vaccines. The book’s goal is to provide a comprehensive overview of the scientific and regulatory challenges facing scientists who research and develop subunit vaccines. The scope of the book is wide. It is written in a manner that will enlighten newcomers to the field (e.g., Ph.D. students or experienced scientist switching fields) yet provides an in-depth knowledge that would benefit a skilled worker in the field.

A significant improvement in the safety of modern vaccines has been the development of subunit vaccines, as these are composed of very well-defined and highly pure components, often recombinant proteins. However, since protein-based antigens in general are weakly immunogenic by themselves, co-administration of adjuvants is required to induce potent and persistent specific immune responses. In recent years, there has been substantial progress in the discovery of new efficient adjuvants for subunit vaccines that are often classified into delivery systems (e.g., liposomes, emulsions, and polymeric nanoparticles) and immunopotentiating compounds that constitute pathogen-associated molecular patterns, such as the toll-like receptor ligands. The combination of delivery systems and immunopotentiators has created highly efficacious adjuvants due to concomitant enhanced antigen delivery and potent stimulation of immunity. Many of these adjuvants are of a particulate nature and mimic the structure and/or composition of microbes in a reductionist fashion. Examples are liposomes, polymeric nanoparticles, emulsions, and virus-like particles. However, there are a substantial number of pharmaceutical challenges associated with the subunit vaccine development process due to the complex nature of the antigen–adjuvant combinations. These challenges will be presented and discussed in this book.

Copenhagen, Denmark Camilla Foged
Copenhagen, Denmark Thomas Rades
Birmingham, UK Yvonne Perrie
Dunedin, New Zealand Sarah Hook
Contents

Part I Background

1 Immunological Background ... 3
 Andrew J. Highton and Roslyn A. Kemp

2 Classification of Vaccines ... 15
 Rie S. Kallerup and Camilla Foged

Part II Delivery Systems for Subunit Vaccines

3 Aluminum Adjuvants: Basic Concepts and Progress
 in Understanding .. 33
 Erik B. Lindblad

4 Emulsions as Vaccine Adjuvants ... 59
 Ruchi R. Shah, Luis A. Brito, Derek T. O’Hagan,
 and Mansoor M. Amiji

5 The Application of Liposomes as Vaccine Adjuvants 77
 Elisabeth Kastner, Signe T. Schmidt, Alexander Wilkinson,
 Dennis Christensen, and Yvonne Perrie

6 Developing Bilayer-Based Delivery Systems for Oral Delivery
 of Subunit Vaccines .. 95
 Jitinder S. Wilkhu and Yvonne Perrie

7 Cubosomes: Structure, Preparation and Use as an Antigen
 Delivery System .. 125
 Shakila B. Rizwan and Ben J. Boyd

8 ISCOMs as a Vaccine Delivery System ... 141
 Hanne M. Nielsen, Henriette B. Hübschmann,
 and Thomas Rades
9 Virus-Like Particles, a Versatile Subunit Vaccine Platform 159
 Braeden Donaldson, Farah Al-Barwani, Vivienne Young, Sarah Scullion, Vernon Ward, and Sarah Young

10 Polymeric Particulates for Subunit Vaccine Delivery 181
 Thomas Schuster, Martin Nussbaumer, Patric Baumann, Nico Bruns, Wolfgang Meier, and Anja Car

11 Gels as Vaccine Delivery Systems ... 203
 Sarah Gordon

12 Implants as Sustained Release Delivery Devices for Vaccine Antigens .. 221
 Julia Engert

13 Dendritic Cell-Based Vaccines .. 243
 Olivier Gasser and Ian F. Hermans

Part III Delivery Routes, Devices and Dosage Forms

14 Parenteral Vaccine Administration: Tried and True 261
 Pål Johansen and Thomas M. Kündig

15 Nasal Administration of Vaccines ... 287
 Regina Scherließ

16 Pulmonary Administration of Subunit Vaccines 307
 Wouter F. Tonnis, Anke L.W. Huckriede, Wouter L.J. Hinrichs, and Henderik W. Frijlink

17 Vaginal Delivery of Subunit Vaccines 331
 Deborah Lowry

18 Transcutaneous Immunization .. 347
 Teerawan Rattanapak, Camilla Foged, and Sarah Hook

Part IV Pharmaceutical Analysis and Quality Control of Vaccines

19 Pharmaceutical Analysis and Quality Control of Vaccines 373
 Michele Pallaoro

20 The Physical Analysis of Vaccines 385
 Yuan Cheng, Justin C. Thomas, Sangeeta B. Joshi, David B. Volkin, and C. Russell Middaugh

21 Characterizing the Association Between Antigens and Adjuvants .. 413
 Mette Hamborg and Camilla Foged

Index .. 427
Contributors

Farah Al-Barwani Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand

Mansoor M. Amiji Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA

Patric Baumann Department of Chemistry, University of Basel, Basel, Switzerland

Ben J. Boyd Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia

Luis A. Brito Novartis Vaccines & Diagnostics, Cambridge, MA, USA

Nico Bruns Department of Chemistry, University of Basel, Basel, Switzerland
Adolphe Merkle Institute, University of Fribourg, Marly, Switzerland

Anja Car Department of Chemistry, University of Basel, Basel, Switzerland

Yuan Cheng Department of Discovery Pharmaceutics, Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA

Dennis Christensen Department of Infectious Disease Immunology, Vaccine Adjuvant Research, Statens Serum Institut, Copenhagen, Denmark

Braeden Donaldson Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand

Julia Engert Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University Munich, Munich, Germany
Camilla Foged Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Henderik W. Frijlink Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands

Olivier Gasser Malaghan Institute of Medical Research, Wellington, New Zealand

Sarah Gordon Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany

Mette Hamborg Department of International Health, Microbiology and Immunology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Ian F. Hermans School of Biological Sciences, Victoria University Wellington, Wellington, New Zealand

Andrew J. Highton Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand

Wouter L.J. Hinrichs Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands

Sarah Hook School of Pharmacy, University of Otago, Dunedin, New Zealand

Anke L.W. Huckriede Molecular Virology Section, Department of Medical Microbiology, University of Groningen, Groningen, The Netherlands

University Medical Centre Groningen, Groningen, The Netherlands

Henriette B. Hübschmann Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Pål Johansen Department of Dermatology, University Hospital Zurich, Zurich, Switzerland

Sangeeta B. Joshi Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS, USA

Rie S. Kallerup Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Elisabeth Kastner School of Life and Health Sciences, Aston University, Birmingham, UK

Roslyn A. Kemp Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand

Thomas M. Kündig Department of Dermatology, University Hospital Zurich, Zurich, Switzerland

Erik B. Lindblad Brenntag Biosector, Frederikssund, Denmark
Deborah Lowry Aston Pharmacy School, Aston University, Birmingham, UK
Wolfgang Meier Department of Chemistry, University of Basel, Basel, Switzerland
C. Russell Middaugh Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS, USA
Hanne M. Nielsen Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Martin Nussbaumer Department of Chemistry, University of Basel, Basel, Switzerland
Derek T. O’Hagan Novartis Vaccines & Diagnostics, Cambridge, MA, USA
Michele Pallaoro Novartis Vaccines, Siena, Italy
Yvonne Perrie School of Life and Health Sciences, Aston University, Birmingham, UK
Thomas Rades Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Teerawan Rattanapak School of Pharmacy, University of Otago, Dunedin, New Zealand
Shakila B. Rizwan New Zealand’s National School of Pharmacy, University of Otago, Dunedin, New Zealand
Regina Scherließ Department of Pharmaceutics and Biopharmaceutics, Kiel University, Kiel, Germany
Signe T. Schmidt Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Thomas Schuster Department of Chemistry, University of Basel, Basel, Switzerland
Sarah Scullion Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
Ruchi R. Shah Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
Justin C. Thomas Eli Lilly and Company, Indianapolis, IN, USA
Wouter F. Tonnis Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
David B. Volkin Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS, USA
Vernon Ward Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
Jitinder S. Wilkhu School of Life and Health Sciences, Aston University, Birmingham, UK

Alexander Wilkinson School of Life and Health Sciences, Aston University, Birmingham, UK

Sarah Young Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand

Vivienne Young Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
About the Editors

Associate Professor Camilla Foged is Head of the Vaccine Design and Delivery Group in Section for Biologics, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark. She has an M.Sc. in Biochemistry from University of Copenhagen. Dr. Foged attained her Ph.D. from The Danish University of Pharmaceutical Sciences. Her main research interest is advanced drug delivery aiming at designing new vaccine and nucleic acid delivery systems to improve therapy. Her group efficiently has addressed drug delivery challenges with cutting-edge technologies, which has enabled high impact publications and innovative solutions in drug delivery. The group’s research goal is to improve disease prevention and treatment by designing nanoparticulate vaccine and nucleic acid formulations through in-depth mechanistic knowledge of how the physicochemical properties of the particles affect their interaction with the environment, e.g., in formulation, in vitro, and in vivo. Dr. Foged is interested in lipid- and polymer-based nanoparticulate delivery systems using various approaches for targeting and membrane destabilization.

Professor Thomas Rades is the Research Chair in Pharmaceutical Design and Drug Delivery at the Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark. Dr. Rades obtained his Ph.D. from the University of Braunschweig, Germany, and he has developed an international reputation for his research on solid dosage forms as well as in vaccine delivery using nanoparticulate systems. Research in both areas aims to improve drug therapy through appropriate formulation and physicochemical characterization of medicines and vaccines. It combines physical, chemical, and biological sciences and technology to optimally formulate drugs and vaccines for human and veterinary uses. Professor Rades has published more than 270 papers in international peer reviewed journals.

Professor Yvonne Perrie is Head of Pharmacy and Chair in Drug Delivery within Aston Pharmacy School, Aston University, Birmingham, UK. Dr. Perrie attained her Ph.D. from the University of London under the supervision of Professor Gregoriadis. Her research is multidisciplinary and is focused on the development of