Multicomponent Reactions

Edited by Jieping Zhu, Hugues Bienaymé
Further Titles of Interest

A. de Meijere, F. Diederich (Eds.)

Metal-Catalyzed Cross-Coupling Reactions, 2nd Ed., 2 Vols.
2004
ISBN 3-527-30518-1

R. Mahrwald (Ed.)

Modern Aldol Reactions, 2 Vols.
2004
ISBN 3-527-30714-1

M. Beller, C. Bolm (Eds.)

Building Blocks and Fine Chemicals
2004
ISBN 3-527-30613-7

N. Krause, A. S. K. Hashmi (Eds.)

Modern Allene Chemistry, 2 Vols.
2004
ISBN 3-527-30671-4
Multicomponent Reactions

Edited by Jieping Zhu, Hugues Bienaymé
Contents

Preface xiii

Contributors xv

1 Asymmetric Isocyanide-based MCRs 1
Luca Banfi, Andrea Basso, Giuseppe Guanti, and Renata Riva
1.1 Introduction 1
1.2 Racemization Issues 1
1.3 Asymmetric Passerini Reactions 2
1.3.1 Classical Passerini Reactions 2
1.3.2 Passerini-type Reactions 5
1.4 Asymmetric Intermolecular Ugi Reactions 6
1.4.1 General Remarks 6
1.4.2 Chiral Amines 8
1.4.2.1 α-Methylbenzylamines 8
1.4.2.2 Ferrocenylamines 9
1.4.2.3 Glycosylamines 10
1.4.2.4 Esters of α-amino Acids 12
1.4.3 Chiral Isocyanides, Carboxylic Acids and Carbonyl Compounds 13
1.4.4 Chiral Cyclic Imines 15
1.5 Asymmetric Intramolecular Ugi Reactions 17
1.5.1 With α-Amino Acids 18
1.5.2 With Other Amino Acids 20
1.5.3 With Keto Acids 23
1.6 Other Asymmetric Isonitrile-based Multicomponent Reactions 24
1.6.1 Tandem Ugi or Passerini Reaction/ Intramolecular Diels–Alder (IMDA) Cyclizations 24
1.6.2 Other Asymmetric Isonitrile-based Multicomponent Reactions 26
References 29

2 Post-condensation Modifications of the Passerini and Ugi Reactions 33
Stefano Marcaccini and Tomás Torroba
2.1 Convertible Isocyanides 33
2.2 I-MCR Post-condensation Reactions in Synthesis of Open-chain Products 38
 2.2.1 Passerini 3CR + O-Deacylation 38
 2.2.2 Passerini-3CR + N-Deprotection + O → N Acyl Migration 39
 2.2.3 Ugi-4CR + Oxidation 41
 2.2.4 Ugi-4CR + Hydrolysis 42
 2.2.5 Ugi-4CR in Peptide Synthesis 42
2.3 I-MCR Post-condensation Reactions in the Synthesis of Heterocycles 44
 2.3.1 Three-, Four-, and Five-membered Rings and their Benzo-fused Derivatives 44
 2.3.1.1 Oxiranes and β-Lactams by Passerini-3CR + O- or N-alkylation 44
 2.3.1.2 β-Lactams and Succinimides by Ugi-4CR + C-Alkylation 44
 2.3.1.3 Furans, Pyrroles, and Indoles by Passerini-3CR or Ugi-4CR and Knoevenagel Condensation 45
 2.3.1.4 Butenolides by Passerini-3CR and the Horner–Emmons–Wadsworth Reaction 46
 2.3.1.5 Pyrroles and γ-Lactams by Ugi-4CR and Hydrolysis 47
 2.3.1.6 Indazolinones by Ugi-4CR with N-deprotection and Aromatic Nucleophilic Substitution 48
 2.3.1.7 Oxazole Derivatives and Imidazoles by Passerini-3CR or Ugi-4CR and Davidson Cyclization 49
 2.3.1.8 2-Imidazolines, Imidazolidin-2-ones and Benzimidazoles by Ugi-4CR with N-Deprotection and Cyclization 50
 2.3.1.9 Spiroimidazolones and Spirothioimidohydantoins by Ugi-4CR and Further Transformations 51
 2.3.2 Six-membered Rings and Their Benzo-fused Systems 52
 2.3.2.1 Pyridine Derivatives by Ugi-4CR and Aldol-type Condensation 52
 2.3.2.2 Pyridazine Derivatives by Ugi-4CR and Knoevenagel Condensation 53
 2.3.2.3 Phthalazine Derivatives by Ugi-4CR with N-Deprotection and Cyclization 53
 2.3.2.4 Piperazines and Pyrazin-2-ones by Ugi-4CR and Cyclization 53
 2.3.2.5 Ketopiperazines, 2,5-Diketopiperazines and Quinoxalines by Ugi-4CR with N-Deprotection and Intramolecular Amide Bond Formation 55
 2.3.2.6 2,5-Diketopiperazines and Morpholines from Bifunctional Ugi-4CR Reagents 59
 2.3.3 Seven-membered Rings and Their Benzo-fused Systems 59
 2.3.3.1 Azepines by Ugi-4CR and Ring-closing Metathesis 59
 2.3.3.2 1,4-Benzodiazepine-5-ones by Ugi-4CR with N-Deprotection and Aromatic Nucleophilic Substitution 60
 2.3.3.3 1,4-Benzodiazepine-2,5-diones by Ugi-4CR with Convertible Isocyanides and UDC 61
 2.3.4 Bicyclic Systems 62
 2.3.4.1 Carbapenems and Carbacephems by Ugi-4CR and Dieckmann Condensation 62
Free-radical-mediated Multicomponent Coupling Reactions

Mami Tojino and Ilhyong Ryu

- **6.1 Introduction** 169
- **6.2 Hetero-multicomponent Coupling Reactions** 171
- **6.3 Multicomponent Coupling Reactions Mediated by Group 14 Radicals** 175
- **6.4 Multicomponent Coupling Reactions Involving Electron-transfer Processes** 186
- **6.5 Conclusions** 195
- References 196

Multicomponent Reactions with Organoboron Compounds

Nicos A. Petasis

- **7.1 Introduction** 199
- **7.2 MCRs Involving Amines and Aldehydes or Ketones** 200
- **7.3 MCRs Involving Organoboron Compounds** 202
- **7.3.1 Synthesis of Allylamines and Benzylamines** 202
- **7.3.2 A New Three-component Process** 203
- **7.3.3 Synthesis of α-Amino Acids** 205
- **7.3.4 Synthesis of Iminodicarboxylic Acid Derivatives** 208
- **7.3.5 Synthesis of Peptidomimetic Heterocycles** 209
- **7.3.6 Reactions with Other Carbonyl Components** 210
- **7.3.7 Synthesis of Amino Alcohols** 216
- **7.3.8 Synthesis of Amino Polyols and Amino Sugars** 217
- **7.4 Summary and Conclusion** 219
- Acknowledgments 221
- References 222

Metal-catalyzed Multicomponent Reactions

Geneviève Balme, Didier Bouyssi, and Nuno Monteiro

- **8.1 Introduction** 224
- **8.2 Vicinal Difunctionalization of Alkenes and Acetylenes via Intermolecular Carbometallation** 225
- **8.2.1 Difunctionalization of Unactivated Alkenes and Acetylenes** 225
- **8.2.1.1 Carbopalladation of Norbornene and its Analogues** 225
- **8.2.1.2 Carbometallation of Alkynes** 226
- **8.2.2 Difunctionalization of Activated Alkenes** 231
- **8.3 Reactions Involving π-Allyl Palladium Species as Intermediates** 233
- **8.3.1 π-Allyl Palladium Species from Carbopalladation of Unsaturated Substrates** 233
- **8.3.1.1 Carbopalladation of Conjugated Dienes** 233
- **8.3.1.2 Carbopalladation of Non-conjugated Dienes** 235
- **8.3.1.3 Carbopalladation of Allenes** 236
- **8.3.1.4 Carbopalladation of Methylene cyclopropane and Bicyclpropylidene** 240
8.3.1.5 Palladium-mediated Reaction of Vinylic Halides with Alkenes 242
8.3.2 π-Allyl Palladium Species from Allylic Compounds 243
8.4 Cross-coupling Reactions of Terminal Alkynes with Organic Halides 244
8.4.1 Reactions Based on a Pd/Cu-catalyzed Coupling–Isomerization Process 244
8.4.2 Reactions Based on the In Situ Activation of Alkynes by a Sonogashira Coupling Reaction 245
8.5 Cyclofunctionalization of Alkynes and Alkenes Bearing Pendant Nucleophiles 246
8.5.1 Carbonucleophiles 248
8.5.2 Heteronucleophiles 250
8.6 Transition-metal-catalyzed Reactions Based on the Reactivity of Isonitriles 253
8.6.1 Three-component Synthesis of Indoles 253
8.6.2 Iminocarbonylative Cross-coupling Reactions 254
8.6.3 Titanium-catalyzed Three-component Synthesis of β,β-Unsaturated β-Iminoamines 254
8.7 Pd/Cu-catalyzed Synthesis of Triazoles 256
8.8 Reactions Involving Imines as Intermediates 257
8.8.1 Grignard-type Addition of Acetylenic Compounds to Imines 257
8.8.1.1 Synthesis of Propargyl Amines 257
8.8.1.2 Synthesis of Quinolines and Isoquinolines 257
8.8.2 Addition of Organometallic Reagents to Imines 258
8.8.2.1 Allylmetal Reagents 258
8.8.2.2 Alkylmetal Reagents 259
8.8.3 Miscellaneous Reactions Involving Imines 259
8.9 Cycloadditions and Related Reactions 265
8.9.1 Synthesis of Substituted Arenes 265
8.9.2 Synthesis of Pyridines and Analogous Heterocycles 266
8.9.3 Related Reactions 267
8.10 Three-component Reactions Involving Metalallocarbene 268
8.11 Metathesis 269
8.12 Concluding Remarks 270
References 271

9 Catalytic Asymmetric Multicomponent Reactions 277
Jayasree Seayad and Benjamin List
9.1 Introduction 277
9.2 Mannich Reactions 277
9.3 Three-component Aldolizations 281
9.4 Three-component Tandem Michael–Aldol Reaction 281
9.5 Passerini Reaction 282
9.6 Strecker Reaction 284
9.7 Aza Morita–Baylis–Hillman Reactions 286
9.8 Domino-Knoevenagel-hetero-Diels–Alder-type Reactions 289
9.9 Three-component Hetero-[4+2]-cycloaddition–Allylboration Tandem Reaction 292
9.10 Addition of Alkylzincs 293
9.11 Alkyne Nucleophiles 294
9.12 Coupling of Alkynes, Imines and Organoboranes 295
9.13 Free-radical Reactions 295
9.14 Summary and Outlook 297
References 298

10 Algorithm-based Methods for the Discovery of Novel Multicomponent Reactions 300

Lutz Weber
10.1 Introduction 300
10.2 A Definition – What Are Novel MCRs 300
10.3 Unexpected Products Yield Novel MCRs 301
10.4 Experimental Designs to Search for New MCRs 302
10.5 Computational Methods of Finding Novel MCRs 306
10.6 Combinatorial Optimization of Reaction Conditions 308
References 309

11 Applications of Multicomponent Reactions in Drug Discovery – Lead Generation to Process Development 311

Christopher Hulme
Abstract 311
11.1 Introduction 311
11.2 Hantsch (1882) and Biginelli (1893) Reactions 313
11.3 Passerini Reaction (1921) 315
11.4 Ugi Reaction (1958) 319
11.5 Constrained Ugi Adducts from Bi-functional Precursors 324
11.6 Gewald Reaction (1965) 332
11.7 Applications of MCRs to Process Development 335
11.8 Conclusions 336
Acknowledgments 337
References 337

12 Multicomponent Reactions in the Total Synthesis of Natural Products 342

Barry B. Touré and Dennis G. Hall
12.1 Introduction 342
12.2 Cyclopentane-containing Natural Products 343
12.2.1 Prostanoids 343
12.2.2 Others 350
12.3 Terpenoids 350
12.4 Polyenes and Polynyes 360
12.5 Oxacyclic Natural Products 363
12.5.1 Cyclic Ethers 364
12.5.2 Lactones 366
12.6 Polyols and Polysaccharides 368
12.7 Lignans 371
12.8 Alkaloids 372
12.8.1 Indoles 374
12.8.2 Piperidines 374
12.8.3 Pyridines 381
12.8.4 Guanidiniums 382
12.9 Peptides 382
12.10 Other Natural Products 387
12.11 Conclusion 392
References 392

13 The Modified Sakurai and Related Reactions 398
Thomas Jacques, István E. Markó, and Jiří Pospíšil
13.1 Introduction 398
13.2 The Sakurai–Hosomi Reaction 399
13.3 The Silyl-modified Sakurai Reaction 405
13.3.1 History and Asymmetric Versions 405
13.3.2 Use in Total Synthesis 412
13.3.3 Deviance 413
13.3.4 Conclusions 416
13.4 Intramolecular Sakurai Condensation 416
13.4.1 Tetrahydropyran Rings 417
13.4.1.1 Dihydropyrans 418
13.4.1.2 Vinyl Tetrahydropyrans 426
13.4.1.3 exo-Methylene Tetrahydropyrans 429
13.4.2 Tetrahydrofuran Rings 438
13.4.3 Seven-, Eight- and Nine-membered Rings 441
13.4.4 Spiro Compounds 444
13.4.5 Nitrogen Atom-containing Analogues 446
13.4.6 Conclusions 449
References 450

Index 453
Preface

The length of a synthesis is dependent upon the average molecular complexity produced per operation, which depends in turn on the number of chemical bonds being created. Therefore, devising reactions that achieve multi-bond formation in one operation is becoming one of the major challenges in searching for step-economic syntheses. By today’s standards, besides being regio-, chemo- and stereo-selective, an ideal multi-bond-forming process should satisfy the following additional criteria: (a) readily available starting materials; (b) operationally simple; (c) easily automatable; (d) resource effective (personnel, time, cost etc); (e) atom economical; and (f) ecologically benign. Multicomponent reaction (MCR) processes, in which three or more reactants are combined in a single chemical step to produce products that incorporate substantial portions of all the components, naturally comply with many of these stringent requirements for ideal organic syntheses.

Multicomponent reactions, though fashionable these days, have in fact a long history. Indeed, many important reactions such as the Strecker amino acid synthesis (1850), the Hantsch dihydropyridine synthesis (1882), the Biginelli dihydropyrimidine synthesis (1891), the Mannich reaction (1912), and the isocyanide-based Passerini reactions (1921) and Ugi four-component reactions (Ugi-4CRs) (1959), among others, are all multicomponent in nature. In spite of the significant contribution of MCRs to the state of the art of modern organic chemistry and their potential use in complex organic syntheses, little attention was paid to the development of novel MCRs in the second half of the twentieth century. However, with the introduction of molecular biology and high-throughput biological screening, the demand on the number and the quality of compounds for drug discovery has increased enormously. By virtue of their inherent convergence and high productivity, together with their exploratory and complexity-generating power, MCRs have naturally become a rapidly evolving field of research and have attracted the attention of both academic and industrial scientists.

The development of novel MCRs is an intellectually challenging task since one has to consider not only the reactivity match of the starting materials but also the reactivities of the intermediate molecules generated in situ, their compatibility, and their compartmentalization. With advances in both theory and mechanistic insights into various classic bimolecular reactions that allow for predictive analysis of reaction sequences, the development and control of new reactive chemical