Developments in Solid Oxide Fuel Cells and Lithium Ion Batteries

Edited by
Arumugam Manthiram
Prashant N. Kumta
S. K. Sundaram
Siu-Wai Chan

Developments in Solid Oxide Fuel Cells and Lithium Ion Batteries
Journal of the American Ceramic Society

www.ceramicjournal.org

With the highest impact factor of any ceramics-specific journal, the *Journal of the American Ceramic Society* is the world's leading source of published research in ceramics and related materials sciences.

Contents include ceramic processing science; electric and dielectric properties; mechanical, thermal and chemical properties; microstructure and phase equilibria; and much more.

Journal of the American Ceramic Society is abstracted/indexed in Chemical Abstracts, Ceramic Abstracts, Cambridge Scientific, IST's Web of Science, Science Citation Index, Chemistry Citation Index, Materials Science Citation Index, Reaction Citation Index, Current Contents/Physical, Chemical and Earth Sciences, Current Contents/Engineering, Computing and Technology, plus more.

View abstracts of all content from 1997 through the current issue at no charge at www.ceramicjournal.org. Subscribers receive full-text access to online content.

Published monthly in print and online. Annual subscription runs from January through December. ISSN 0002-7820

International Journal of Applied Ceramic Technology

www.ceramics.org/act

Launched in January 2004, *International Journal of Applied Ceramic Technology* is a must-read publication that provides the latest information on fuel cells, nanotechnology, ceramic armor, thermal and environmental barrier coatings, functional materials, ceramic matrix composites, biomaterials, and other cutting-edge topics.

Led by an editorial board of experts from industry, government, and universities, *International Journal of Applied Ceramic Technology* is a peer-reviewed publication that provides the latest information on fuel cells, nanotechnology, ceramic armor, thermal and environmental barrier coatings, functional materials, ceramic matrix composites, biomaterials, and other cutting-edge topics.

Go to www.ceramics.org/act to see the current issue's table of contents listing state-of-the-art coverage of important topics by internationally recognized leaders.

Published quarterly. Annual subscription runs from January through December. ISSN 1546-542X

American Ceramic Society Bulletin

www.ceramicsbulletin.org

The American Ceramic Society Bulletin, is a must-read publication devoted to current and emerging developments in materials, manufacturing processes, instrumentation, equipment, and systems impacting the global ceramics and glass industries.

The Bulletin is written primarily for key specifiers of products and services: researchers, engineers, other technical personnel and corporate managers involved in the research, development and manufacture of ceramic and glass products. Membership in The American Ceramic Society includes a subscription to the Bulletin, including online access.

Published monthly in print and online, the December issue includes the annual ceramicSOURCe company directory and buyer's guide. ISSN 0002-7812

Ceramic Engineering and Science Proceedings (CESP)

www.ceramics.org/cesp

Practical and effective solutions for manufacturing and processing issues are offered by industry experts. CESP includes five issues per year: Glass Problems, Whitewares & Materials, Advanced Ceramics and Composites, Porcelain Enamel. Annual subscription runs from January to December. ISSN 0196-6219

ACerS-NIST Phase Equilibria Diagrams CD-ROM Database Version 3.0

www.ceramics.org/phasedb

The ACerS-NIST Phase Equilibria Diagrams CD-ROM Database Version 3.0 contains more than 19,000 diagrams previously published in 20 phase volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program: Volumes I through XIII; Annuals 91, 92 and 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. The CD-ROM includes full commentaries and interactive capabilities.
Contents

Preface...vii

Solid Oxide Fuel Cells
Characterization of Sr-Doped Neodymium Cobalt Oxide Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells3
K.T. Lee and A. Manthiram

Microstructure and Electrical Conductivity Studies of (La,Sr)(Cr,Mn,Co)O$_3$...13
Soydan Ozcan and Rasit Koc

Interface Reactivity Between Yttria Stabilized Zirconia and Strontium-Lanthanum Manganites ..21
Monika Backhaus-Ricoult, Michael Badding, Jacqueline Brown, Mike Carson, Earl Sanford, and Yves Thibault

Elastic Properties, Biaxial Strength and Fracture Toughness of Nickel-Based Anode Materials for Solid Oxide Fuel Cells ..31
Miladin Radovic, Edgar Lara-Curzio, Beth Armstrong, and Claudia Walls

Effect of Hydrogen Reduction on the Microstructure and Elastic Properties of Ni-Based Anodes for SOFCs ...41
Miladin Radovic, Edgar Lara-Curzio, Beth Armstrong, Peter Tortorelli, and Larry Walker

Electrical and Microstructural Investigation of YSZ and TZP Doped with NiO ..51
C.L. Silva, F.R. Costa, M.R. Morelli, and D.P.F. de Souza

Chemical Synthesis of LSGM Powders for Solid Oxide Fuel Cell (SOFC) Electrolyte ...61
Cinar Oncel and Mehmet Ali Gulgun

Long-Term Thermal Cycling of Phlogopite Mica-Based Compressive Seals for Solid Oxide Fuel Cells ...69
Yeong-Shyung Chou and Jeffry W. Stevenson

Alternative Methods of Sealing Planar Solid Oxide Fuel Cells79
K.S. Weil, C.A. Coyle, J.S. Hardy, J.Y. Kim, and G.-G. Xia

Infiltrated Phlogopite Micas with Superior Thermal Cycle Stability as Compressive Seals for Solid Oxide Fuel Cells89
Yeong-Shyung Chou and Jeffry W. Stevenson
Lithium Ion Batteries

Manganese Oxide Cathodes for Transportation Applications. 101
Arumugam Manthiram and Youngjoon Shin

HRTEM Imaging and EELS Spectroscopy of Lithiation Process in FeF\textsubscript{X}:C Nanocomposites. ... 111
F. Cosandey, J.F. Al-Sharab, F. Badway, and G.G. Amatucci

Amorphous Silicon Thin Film Anodes for Lithium-Ion Batteries 121
J.P. Maranchi, P.N. Kumta, and A.F. Hepp

Chemically Derived Nano-encapsulated Tin-Carbon Composite Anodes for Li-ion Batteries .. 131
Il-seok Kim, Prashant N. Kumta, and G.E. Blomgren

Author Index ... 141
Keyword Index ... 142
Preface

The growing environmental concerns and the increasing depletion of fossil fuels have created enormous global interest in alternative energy technologies. Fuel cells and high energy density batteries are appealing in this regard as they offer clean energy. They are attractive for a variety of power needs ranging from portable electronic devices to electric vehicles to stationary power.

Batteries are the major power sources for portable electronic devices. The exponential growth of popular portable electronic devices such as cellular phones and laptop computers has created an increasing demand for compact, lightweight power sources. Lithium-ion batteries have become appealing in this regard as they offer higher energy density compared to other rechargeable systems. The higher energy density also makes them attractive for hybrid and electric vehicles. Commercial lithium-ion cells currently use the layered lithium cobalt oxide as the cathode and carbon as the anode. However, the practical capacity of lithium cobalt oxide is limited, and cobalt is relatively expensive and toxic. On the other hand, the currently used graphite anode exhibits irreversible capacity loss. These difficulties have created enormous worldwide interest to develop alternative cathode and anode materials.

Unlike the battery technology, the fuel cell technology has not quite matured, and it is confronted with materials issues and high cost. For example, the high operating temperature of the conventional zirconia-based electrolyte limits the choice of electrode and interconnect materials for solid oxide fuel cells (SOFC). There is immense interest to lower the operating temperature of SOFC and use hydrocarbon fuels directly without requiring external reformers. The research activities focus on the development of compatible cathode, anode, and electrolyte combinations that can operate at an intermediate temperature of around 700°C. Additionally, cost-effective manufacturing and development of stable seals are critical for the success of the SOFC technology. In this regard, development of new materials as well as processing and characterization of ceramic materials play a key role.

To bring the ceramics community up to date on the fuel cell and battery technologies, the American Ceramic Society has been hosting symposia on related topics since 1995. This volume consists of 14 papers that were presented at the 106th Annual Meeting of the American Ceramic Society, Indianapolis, IN, April 18-21, 2004. A number of leading experts in materials science and engineering, solid state chemistry and physics, electrochemical science and technology from academia, industry and national laboratories presented their research and developments at this symposium. The presentations covered development of new materials and a fundamental understanding of the structure-property-performance relationships and the associated electrochemical
and solid state phenomena. The symposium was sponsored by the Electronics, Basic Science, and Nuclear and Environmental divisions of the American Ceramic Society. Of the papers presented at this symposium, including several invited talks, 14 peer-reviewed papers are included in this volume under two subtopics: solid oxide fuel cells and lithium-ion batteries.

The editors acknowledge the support of several members of the Electronics, Basic Science, and Nuclear and Environmental divisions of the American Ceramic Society. The editors also thank all the authors, session chairs, manuscript reviewers, and the society staff who made the symposium and the proceeding volume a success. It is the sincere hope of the editors that the readers will appreciate and benefit from this collection of articles in the area of solid oxide fuel cells and lithium ion batteries.

Arumugam Manthiram
Prashant N. Kumta
S. K. Sundaram
Siu-Wai Chan
Solid Oxide Fuel Cells
CHARACTERIZATION OF Sr-DOPED NEODYMIUM COBALT OXIDE CATHODE MATERIALS FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS

K.T. Lee and A. Manthiram
Materials Science and Engineering Program
University of Texas at Austin
Austin, TX 78712

ABSTRACT

With an aim to explore as cathode materials for intermediate temperature solid oxide fuel cells, the structure and properties of Nd$_{1-x}$Sr$_x$CoO$_{3.5}$ oxides have been investigated for 0 ≤ x ≤ 0.5. The Nd$_{1-x}$Sr$_x$CoO$_{3.5}$ system crystallizing in the orthorhombic perovskite structure exhibits a semiconductor to metal transition at x ≈ 0.3, and the electrical conductivity increases with x. The thermal expansion coefficient decreases initially with increasing x, reaches a minimum at x = 0.3, and then increases. While the increasing electrical conductivity leads to an increase in electrocatalytic activity and power density initially with x, the enhanced interfacial reactions between the cathode and the La$_{0.8}$Sr$_{0.2}$Ga$_{0.8}$Mg$_{0.2}$O$_{2.8}$ (LSGM) electrolyte result in a decline in the activity at higher values of x > 0.4. Thus the x = 0.4 sample exhibits the highest catalytic activity with a maximum power density value of 0.24 W/cm2 at 800 °C in single cells fabricated with the Ni-Ce$_{0.9}$Gd$_{0.1}$O$_{1.95}$ (GDC) cermet anodes.

INTRODUCTION

Solid oxide fuel cells (SOFCs) based on yttria-stabilized zirconia (YSZ) electrolytes generally need an operating temperature of around 1000 °C, which leads to difficulties arising from thermal expansion mismatch, interfacial reaction between the electrolyte and electrode, and limitations in the choice of interconnect materials. These difficulties have generated interest in the development of SOFCs that can operate at an intermediate temperature of 500-800 °C, but the lower temperatures lead to large over-potential at the oxygen reduction electrode. Although the Sr-doped LaMnO$_3$ (LSM) perovskite oxides exhibit acceptable electrochemical activity at 1000 °C with YSZ, the low oxide ion conductivity prevent their use for intermediate temperature SOFCs. With this respective, the Sr-doped LaCoO$_3$ (LSC) perovskite oxides have drawn attention due to their high electronic and ionic conductivities, but they experience high thermal expansion and low chemical stability. The replacement of La by other lanthanides Ln = Sm and Gd can lower the thermal expansion due to the decrease in the ionicity of the Ln-O bond. However, replacement of the larger La by smaller Ln = Pr, Sm, and Gd will lower the electronic conductivity due to a bending of the O-Co-O bonds from 180° and a consequent decrease in the bandwidth. To realize a compromise between these two parameters, we focus on the Nd$_{1-x}$Sr$_x$CoO$_{3.5}$ compositions since the ionic size of Nd$^{3+}$ is intermediate between those of La$^{3+}$ and Sm$^{3+}$ or Gd$^{3+}$ and the ionicity of the Nd-O bond is intermediate between those of La-O and Sm-O or Gd-O bonds. We present here the crystal chemistry, electrical conductivity, thermal expansion, and electrochemical performance of Nd$_{1-x}$Sr$_x$CoO$_{3.5}$ for 0 ≤ x ≤ 0.5.

EXPERIMENTAL

The Nd$_{1-x}$Sr$_x$CoO$_{3.5}$ samples were synthesized by firing required amounts of Nd$_2$O$_3$, SrCO$_3$, and Co$_3$O$_4$ in air first at 900 °C for 12 h, followed by regrinding, pressing into pellets, and...
sintering at 1200 °C for 24 h. In order to study the effect of material synthesis procedure, the \(\text{Nd}_{0.4}\text{Sr}_{0.6}\text{CoO}_{3.6} \) composition was also synthesized by a coprecipitation method. For the coprecipitation method, required amounts of \(\text{Nd}_2\text{O}_3 \), \(\text{SrCO}_3 \), and \(\text{Co(CH}_3\text{COO})_2\cdot4\text{H}_2\text{O} \) were dissolved in dilute nitric acid and the metal ions were then coprecipitated as carbonates and hydroxides by adding a mixture of KOH and \(\text{K}_2\text{CO}_3 \).\(^{12}\) The coprecipitate was washed with deionized water, dried, fired at 500 °C for 5 h, ground, pressed into pellets, and sintered at 1200 °C for 24 h. The \(\text{NiO-Ge}_{0.5}\text{Gd}_{0.5}\text{O}_{1.55} \) (GDC) cermet (\(\text{Ni-GDC} = 70:30 \) vol %) anode was synthesized by the glycine-nitrate combustion method.\(^{13}\) Glycine was added to a nitric acid solution containing stoichiometric amounts of \(\text{Gd}_2\text{O}_3 \), \(\text{Ge}_2\text{O}_3 \), and \(\text{Ni(CH}_3\text{COO})_2\cdot4\text{H}_2\text{O} \). The metal nitrate/glycine solution was heated on a hot plate to evaporate excess water and the anode cermet powder was obtained by self-sustaining combustion of the solid mass. The residual carbon was then removed by calcination at 600 °C for 3 h in air. The \(\text{La}_{0.8}\text{Sr}_{0.2}\text{Gd}_{0.8}\text{Ge}_{0.2}\text{O}_{2.8} \) (LSGM) electrolyte was prepared by firing required amounts of \(\text{La}_2\text{O}_3 \), \(\text{SrCO}_3 \), \(\text{Ga}_2\text{O}_3 \), and \(\text{MgO} \) at 1100 °C for 5 h, followed by palletizing and sintering at 1500 °C for 10 h.

Crystal chemistry characterizations were carried out with X-ray diffraction (XRD) employing Rietveld method. Thermogravimetric analysis (TGA) and thermal expansion measurement were carried out with a heating/cooling rate of, respectively, 2 and 10 °C/min in air. The electrical conductivity data were collected with a four-probe dc method in the temperature range of 200-900 °C in air. Electrochemical performances were carried out with single cells at 800 °C. The \(\text{Nd}_{1-x}\text{Sr}_x\text{CoO}_3 \) cathodes and \(\text{NiO-GDC} \) cermet anode were prepared by screen printing on a 1 mm thick LSGM electrolyte pellet, followed by firing for 3 h at 1000 °C for the cathode and 1200 °C for the anode. The geometrical area of the electrode was 0.25 cm\(^2\) and Pt paste was used as the reference electrode. Humidified \(\text{H}_2 \) (3% \(\text{H}_2\text{O} \) at 30 °C) and air were supplied as fuel and oxidant, respectively, at a rate of 100 cm\(^3\)/min.

RESULT AND DISCUSSION

All the \(\text{Nd}_{1-x}\text{Sr}_x\text{CoO}_3 \) (0 ≤ x ≤ 0.5) samples synthesized were found to be single phase and were indexed with the orthorhombic \(\text{GdFe}_2\text{O}_5 \) type perovskite structure (space group Pbnm, No. 62). The variations in the lattice parameters and lattice volume with Sr content x are shown in Figure 1. The lattice parameters and lattice volume increase with increasing x. The substitution of \(\text{Sr}^{2+} \) (ionic radius = 1.44 Å) for \(\text{Nd}^{3+} \) (1.27 Å) causes an oxidation of the larger \(\text{Co}^{3+} \) (0.61 Å) to a smaller \(\text{Co}^{4+} \) (0.53 Å) and/or the formation of oxygen vacancies. Nevertheless, a significantly larger size of \(\text{Sr}^{2+} \) compared to that of \(\text{Nd}^{3+} \) results in an overall increase in the lattice parameters and volume with x.

When \(\text{Sr}^{2+} \) ions are substituted for \(\text{Nd}^{3+} \) ions, the charge imbalance could be compensated by either or both of the following two mechanisms: electronic compensation by an oxidation of \(\text{Co}^{2+} \) to \(\text{Co}^{4+} \) in \(\text{Nd}_{1-x}\text{Sr}_x\text{Co}^{2+}\text{O}_3 \) and/or ionic compensation by the formation of oxygen vacancies in \(\text{Nd}_{1-x}\text{Sr}_x\text{Co}^{3+}\text{O}_{3-x} \). Petrov et al.\(^{6}\) reported that the concentration of \(\text{Co}^{4+} \) in the \(\text{La}_{1-x}\text{Sr}_x\text{CoO}_3 \) system increases with x, reaches a maximum at x ~ 0.4, and then decreases at higher values of x. This result suggests that at higher doping levels (x > 0.4), the charge imbalance is primarily compensated by the formation of oxygen vacancies. In order to verify the defect structure of \(\text{Nd}_{1-x}\text{Sr}_x\text{CoO}_3 \), we investigated the samples with thermogravimetric analysis (TGA) in air, and the TGA data of \(\text{Nd}_{1-x}\text{Sr}_x\text{CoO}_3 \) on heating in air are shown in Figure 2.
Figure 1. Variations of the lattice parameters and lattice volume of Nd$_{1-x}$Sr$_x$CoO$_{3-\delta}$ (0 $\leq x \leq 0.5$) with Sr content, x.

Figure 2. TGA plots of Nd$_{1-x}$Sr$_x$CoO$_{3-\delta}$ (0 $\leq x \leq 0.5$) recorded in air with a heating rate of 2 °C/min.