Edited by
Karl Jousten

Handbook of Vacuum Technology
Contents

Preface XXIII

1 The History of Vacuum Science and Vacuum Technology 1
 References 16
 Further Reading 17

2 Applications and Scope of Vacuum Technology 19
 References 27

3 Gas Laws and Kinetic Theory of Gases 29
 3.1 Description of the Gas State 29
 3.1.1 State Variables 29
 3.1.2 Extensive Quantities 33
 3.1.3 Equation of State of an Ideal Gas 35
 3.1.4 Mixtures of Different Gas Species 37
 3.2 Kinetic Theory of Gases 38
 3.2.1 Model Conceptions 38
 3.2.2 Wall Pressure due to Impacting Particles 39
 3.2.3 Maxwell–Boltzmann Velocity Distribution 41
 3.2.4 Collision Rate and Effusion 44
 3.2.5 Size of Gas Particles and Free Path 45
 3.3 Transport Properties of Gases 50
 3.3.1 Pressure Dependence 50
 3.3.2 Transport of Frictional Forces in Gases and Viscosity 51
 3.3.3 Transport of Heat in Gases and Thermal Conductivity 55
 3.3.4 Diffusion 63
 3.4 Real Gases 65
 3.4.1 Equations of State 65
 3.4.2 Particle Properties and Gas Behavior 69
 3.5 Vapors 75
 3.5.1 Saturation Vapor Pressure 75
 3.5.2 Evaporation Rate 79
Comprehensive general treatments of the subject 82

4 Gas Flow 83
4.1 Types of Flows and Definitions 83
4.1.1 Characterizing Flow, Knudsen Number, and Reynolds Number 83
4.1.2 Gas Flow, Throughput, and Pumping Speed 87
4.1.3 Flow Resistance and Flow Conductance 90
4.1.4 Effective Pumping Speed of a Vacuum Pump 92
4.2 Inviscid Viscous Flow and Gas Dynamics 93
4.2.1 Conservation Laws 93
4.2.2 Gradual Change of Cross-Sectional Area: Isentropic Change of State 95
4.2.3 Critical Flow 98
4.2.4 Choked Flow at Low Outlet Pressure 100
4.2.5 Contraction of Flow into Aperture and Tube 101
4.2.6 Examples of Nozzle Flow 102
4.2.7 Straight and Oblique Compression Shocks 106
4.2.8 Laval Nozzle and Effluent Flow against Counterpressure 108
4.2.9 Flow Around a Corner (Prandtl–Meyer Flow) 111
4.3 Frictional–Viscous Flow through a Tube 114
4.3.1 Laminar and Turbulent Flows through a Tube 114
4.3.2 Airflow through a Tube 118
4.3.3 Air Inflow to a Vessel: Examples 120
4.3.4 Tube at the Inlet of a Pump: Examples 125
4.3.5 Flow through Ducts with Noncircular Cross Sections 128
4.3.6 Influence of Gas Species on Flow 130
4.4 Molecular Flow under High-Vacuum and Ultrahigh-Vacuum Conditions 131
4.4.1 Flow Pattern, Definitions, and Transmission Probability 131
4.4.2 Molecular Flow through an Aperture 135
4.4.3 Molecular Flow through a Tube with Constant Cross-Sectional Area 137
4.4.4 Molecular Flow through a Tube with Circular Cross Section 139
4.4.5 Molecular Flow through Tubes with Simple Cross-Sectional Geometry 140
4.4.6 Tube Bend and Tube Elbow 143
4.4.7 Series Connection of Tube and Aperture 145
4.4.8 Series Connection of Components 146
4.4.9 Molecular Flow through Conical Tube with Circular Cross Section (Funnel) 148
4.4.10 Component in the Inlet Line of a Pump 150
4.5 Flow throughout the Entire Pressure Range 151
4.5.1 Flow Ranges 151
4.5.2 Flow through a Thin Aperture with Circular Cross Section 151
5.8 Appendix A 223
5.8.1 Tables 223
References 225

6 Sorption and Diffusion 229
6.1 Sorption Phenomena and the Consequences, Definitions, and Terminology 229
6.2 Adsorption and Desorption Kinetics 234
6.2.1 Adsorption Rate 234
6.2.2 Desorption Rate 235
6.2.3 Hobson Model of a Pump-down Curve 238
6.2.4 Monolayer Adsorption Isotherms 242
6.2.5 Multilayer Adsorption and Brunauer–Emmett–Teller (BET) Isotherm 244
6.2.6 Monolayer Time 246
6.3 Absorption, Diffusion, and Outgassing 247
6.4 Permeation 254
References 256
Further Reading 256

7 Positive Displacement Pumps 259
7.1 Introduction and Overview 259
7.2 Oscillating Positive Displacement Pumps 262
7.2.1 Piston Pumps 262
7.2.2 Diaphragm Pumps 264
7.2.2.1 Design and Principle of Operation 264
7.2.2.2 Pumping Speed and Ultimate Pressure 265
7.2.2.3 Gas Ballast 266
7.2.2.4 Drive Concepts 267
7.2.2.5 Ultimate Pressure 267
7.2.2.6 Influence of Gas Species on Pumping Speed and Ultimate Pressure 269
7.2.2.7 Influence of Rotational Speed on Ultimate Pressure 269
7.2.2.8 Design Principles 269
7.2.2.9 Diaphragm Pumps in Chemical Laboratories 271
7.2.2.10 Diaphragm Pumps as Backing Pumps to Turbomolecular Pumps 272
7.2.2.11 Diaphragm Pumps Combined with Other Types of Vacuum Pumps 275
7.3 Single-Shaft Rotating Positive Displacement Pumps 276
7.3.1 Liquid Ring Vacuum Pumps 276
7.3.1.1 Design and Principle of Operation 277
7.3.1.2 Operating Properties and Dimensioning 278
7.3.1.3 Designs 281
7.3.1.4 Pump Units with Liquid Ring Vacuum Pumps 284
7.3.1.5 Suggestions for Economical Operation 286
7.3.2 Sliding Vane Rotary Pumps 287
7.3.2.1 Operating Principle and Design 288
Contents

7.6.2.3 Polytropic Compression 343
7.6.2.4 Compression Power 344
7.7 Operating and Safety Recommendations 345
7.7.1 Installation 345
7.7.2 Starting and Shut Down, Inlet Valves 346
7.7.3 Pump Selection and Operating Recommendations 347
7.7.4 Technical Safety Recommendations 348
7.8 Specific Accessories for Positive Displacement Pumps 350
7.8.1 Sorption Traps 350
7.8.2 Safety Valves 351
7.8.3 Oil Filter and Oil Cleaning 352
7.8.4 Exhaust Filter (Oil–Mist Separator) 353
7.8.5 Dust Filters 355
References 356
Further Reading on Positive Displacement Pumps 359

8 Condensers 361
8.1 Condensation Processes Under Vacuum 361
8.1.1 Fundamentals 361
8.1.2 Condensation of Pure Vapors 363
8.1.3 Condensation of Gas–Vapor Mixtures 366
8.1.4 Coolants 369
8.2 Condenser Designs 370
8.2.1 Surface Condensers for Liquid Condensation 370
8.2.2 Direct Contact Condensers 372
8.2.3 Condensate Discharge 374
8.2.4 Surface Condensers for Solid Condensation 375
8.3 Integrating Condensers into Vacuum Systems 376
8.3.1 Condensers Combined with Vacuum Pumps 376
8.3.2 Control 379
8.4 Calculation Examples 380
References 382

9 Jet and Diffusion Pumps 383
9.1 Introduction and Overview 383
9.2 Liquid Jet Vacuum Pumps 385
9.3 Steam Jet Vacuum Pumps 387
9.3.1 Design and Function 387
9.3.2 Performance Data, Operating Behavior, and Control 389
9.3.3 Multistage Steam Jet Vacuum Pumps 393
9.3.4 Organic Vapors as Driving Pump Fluids 395
9.4 Diffusion Pumps 396
9.4.1 Design and Principle of Operation 396
Contents

10.7 Operation and Maintenance of Turbomolecular Pumps 455
10.7.1 Backing Pump Selection 455
10.7.2 General Notes 455
10.7.3 Startup 455
10.7.4 Obtaining Base Pressure 456
10.7.5 Operation in Magnetic Fields 456
10.7.6 Venting 456
10.7.7 Maintenance 457
10.8 Applications 457

References 460

11 Sorption Pumps 463
11.1 Introduction 463
11.2 Adsorption Pumps 464
11.2.1 Working Principle 464
11.2.2 Design 466
11.2.3 Ultimate Vacuum and Pumping Speed 468
11.2.3.1 Ultimate Pressure with a Single Adsorption Pump 468
11.2.3.2 Ultimate Pressure with Two or More Adsorption Pumps 469
11.2.4 Operating Suggestions 471
11.3 Getter 472
11.3.1 Mode of Operation and Getter Types 472
11.3.2 NEG Pumps 474
11.3.2.1 Fundamentals of Bulk Getters/NEG 474
11.3.2.2 Design of NEG Pumps 478
11.3.2.3 Pumping Speed and Getter Capacity 479
11.3.2.4 Applications of NEG Pumps 481
11.3.2.5 Safety and Operating Recommendations 481
11.3.3 Evaporation/Sublimation Pumps 483
11.3.3.1 Evaporation Materials 483
11.3.3.2 Pumping Speed 484
11.3.3.3 Getter Capacity 486
11.3.3.4 Design of Evaporation Getters 487
11.4 Ion Getter Pumps 493
11.4.1 Working Principle 493
11.4.2 Technical Design (Diode Type) 497
11.4.3 Pumping Speed 498
11.4.4 The Differential Ion Pump 500
11.4.5 Triode Pumps 501
11.4.6 Distributed Ion Pumps 504
11.4.7 Residual Gas Spectrum 504
11.4.8 Operation 505
11.5 Orbitron Pumps 507

References 508

Further Reading 509
12 Cryotechnology and Cryopumps 511
12.1 Introduction 511
12.2 Methods of Refrigeration 512
12.2.1 Gas Refrigeration Processes 513
12.2.1.1 Stirling Process 515
12.2.1.2 Gifford–McMahon Process 516
12.2.1.3 Pulse Tube Process 518
12.2.2 Cryostat with Liquid Cryogens 519
12.2.3 Measurement of Low Temperatures 520
12.3 Working Principles of Cryopumps 520
12.3.1 Gas Condensation 523
12.3.2 Cryosorption 525
12.3.2.1 Solid Adsorbents 526
12.3.2.2 Cryotrapping 530
12.4 Design of Cryopumps 531
12.4.1 Cryotechnological Constructive Parameters 531
12.4.1.1 Thermal Radiation 531
12.4.1.2 Thermal Conduction 535
12.4.2 Vacuum Technology: Design Parameters 538
12.4.3 Construction Principles 541
12.4.3.1 Bath Cryopumps 541
12.4.3.2 Refrigerator Cryopumps 543
12.5 Characteristics of a Cryopump 547
12.5.1 Starting Pressure 547
12.5.2 Ultimate Pressure 548
12.5.3 Pumping Speed 549
12.5.4 Service Life 550
12.5.5 Capacity (Maximum Gas Intake) 552
12.5.6 Crossover Value 552
12.5.7 Maximum Tolerable pV Flow 552
12.5.8 Resistance to Thermal Radiation 552
12.5.9 Regeneration 552
12.5.10 Performance Comparison 555
12.6 Application Examples 555
12.6.1 Cryopumps with Forced Cooling Using Supercritical Helium 556
12.6.2 Combined Refrigerator/Liquid Cryopumps 558
12.6.3 Cryopumps with Forced Cooling Using Liquid Cryogen 559
12.6.4 Cryopumps in Large Research Applications 560
12.6.5 Cryopumps in Industrial Facilities 561
12.6.6 Development Trends for Cryopumps 561
References 562

13 Total Pressure Vacuum Gauges 565
13.1 Introduction 565
13.2 Mechanical Vacuum Gauges 566