Implantable Bioelectronics
Devices, Materials, and Applications

Edited by Evgeny Katz
Edited by Evgeny Katz

Implantable Bioelectronics
Related Titles

Katz, E. (ed.)

Biomolecular Information Processing
From Logic Systems to Smart Sensors and Actuators
2012
ISBN: 978-3-527-33228-1

Katz, E. (ed.)

Molecular and Supramolecular Information Processing
From Molecular Switches to Logic Systems
2012
ISBN: 978-3-527-33195-6

Katz, E. (ed.)

Information Processing Set
2 Volumes
(consisting of “Biomolecular Information Processing” and “Molecular and Supramolecular Information Processing”)
2012
ISBN: 978-3-527-33245-8

Cosnier, S., Karyakin, A. (Eds.)

Electropolymerization
Concepts, Materials and Applications
2010
ISBN: 978-3-527-32414-9

Alkire, R.C., Kolb, D.M., Lipkowski, J. (Eds.)

Bioelectrochemistry
Fundamentals, Applications and Recent Developments
2012
ISBN: 978-3-527-32885-7

Kumar, C.S. (ed.)

Nanotechnologies for the Life Sciences
10 Volume Set
2011
Print ISBN: 978-3-527-33114-7

Waser, R. (ed.)

Nanoelectronics and Information Technology
Advanced Electronic Materials and Novel Devices
Third, Completely Revised and Enlarged Edition
2012
Print ISBN: 978-3-527-40927-3

Wallace, G.G., Moulton, S., Kapsa, R.M.I., Higgins, M.

Organic Bionics
2012
ISBN: 978-3-527-32882-6
Contents

Preface XV
List of Contributors XVII

1 Implantable Bioelectronics – Editorial Introduction 1
Evgeny Katz
References 5

2 Magnetically Functionalized Cells: Fabrication, Characterization, and Biomedical Applications 7
Ekaterina A. Naumenko, Maria R. Dzamukova, and Rawil F. Fakhrullin
2.1 Introduction 7
2.2 Magnetic Microbial Cells 8
2.2.1 Direct Deposition of MNPs onto Microbial Cells 8
2.2.2 Polymer-Mediated Deposition of MNPs onto Microbial Cells 9
2.2.2.1 Layer-by-Layer Magnetic Functionalization of Microbial Cells 9
2.2.2.2 Single-step Polymer-mediated Magnetic Functionalization of Microbial Cells 11
2.2.3 Applications of Magnetically Modified Microbial Cells 15
2.2.3.1 Biosorbents and Biocatalysts 15
2.2.3.2 Whole-Cell Biosensors and Microfluidic Devices 15
2.2.3.3 Remotely Controlled Organisms 16
2.3 Magnetic Labeling of Mammal (Human) Cells 18
2.3.1 Intracellular Labeling of Cells 18
2.3.1.1 Labeling with Anionic Magnetic Nanoparticles 18
2.3.1.2 Labeling with Cationic Magnetic Nanoparticles 19
2.3.2 Extracellular Labeling of Cells 20
2.3.3 Applications of Magnetically Labeled Cells in Biomedicine 20
2.3.3.1 MRI Imaging of MNPs-Labeled Cells 21
2.3.3.2 MNPs-Mediated Cell Delivery and Tissue Engineering 21
3 Untethered Insect Interfaces 27
Amol Jadhav, Michel M. Maharbiz, and Hirotaka Sato
3.1 Introduction 27
3.2 Systems for Tetherless Insect Flight Control 30
3.2.1 Various Approaches to Tetherless Flight Control 30
3.2.2 Neurostimulation for Initiation of Wing Oscillations 30
3.2.3 Extracellular Stimulation of the Muscles to Elicit Turns 32
3.3 Implantable Bioelectronics in Insects 33
3.3.1 Example: Insertion of Flexible Substrates into the Developing Eye 33
3.4 Conclusions 39
References 39

4 Miniaturized Biomedical Implantable Devices 45
Ada S.Y. Poon
4.1 Introduction 45
4.2 Energy Harvesting as a Pathway to Miniaturization 47
4.3 Implementation of Implantable Devices 48
4.3.1 RF Power Harvesting 49
4.3.1.1 Matching Network 49
4.3.1.2 Rectifier 49
4.3.1.3 Regulator and Bandgap Reference 50
4.3.1.4 Low-Power Controller and Auxiliary Circuits in the Implant Functional Block 50
4.3.2 Wireless Communication Link 51
4.3.2.1 Forward Data Link 51
4.3.2.2 Reverse Data Link 54
4.3.3 Payload and Applications: Locomotive Implant and Implantable Cardiac Probe 56
4.3.3.1 Actuation for Therapeutics: Millimeter-Sized Wirelessly Powered and Remotely Controlled Locomotive Implant 56
4.3.3.2 Low-Power Sensing for Diagnostics: Implantable Intracardiac Probe 59
4.4 Conclusion 62
References 62

5 Cross-Hierarchy Design Exploration for Implantable Electronics 65
Mrigank Sharad and Kaushik Roy
5.1 Introduction 65
5.2 System Overview of a Generic Bioelectronic Implant 65
5.3 Circuit Design for Low-Power Signal Processing 67
5.3.1 Design Challenges for Low-Power Bioelectronic Sensor Interface 67
5.3.2 Analog Signal Processing Using Subthreshold Circuits 68
5.3.3 Analog-to-Digital Conversion 69
5.3.4 Low-Power Digital Signal Processing 71
5.3.4.1 V_{DD} Scaling and Parallel Processing 71
5.3.4.2 Dynamic Voltage and Frequency Scaling 72
5.3.4.3 Standby Mode Power Reduction 73
5.3.4.4 Minimum Energy Subthreshold Operation 73
5.3.5 FinFETs for Ultralow Voltage Subthreshold Circuits 74
5.4 Architecture-Level Optimizations for Low-Power Data Processing 76
5.4.1 Optimal Apportioning of Computation Task to Analog and Digital Blocks 76
5.4.2 Approximate Computing for Low Power 78
5.5 Design of Energy-Efficient Memory 79
5.5.1 Design Challenges with Subthreshold SRAM 79
5.5.1.1 On-Current to Off-Current Ratio 79
5.5.1.2 Sizing Constraints 79
5.5.1.3 Variability 80
5.5.2 Spin Transfer Torque MRAM (STT-MRAM) for Energy-Efficient Memory Design 80
5.6 Wireless Communication Power Delivery 81
5.6.1 Near-Field Electromagnetic Wireless Communication 82
5.6.2 Far-Field Electromagnetic Wireless Communication 82
5.6.3 Wireless Energy Transfer 83
5.7 Conclusion 83

References 84

6 Neural Interfaces: from Human Nerves to Electronics 87
Jessica D. Falcone, Joav Birjiniuk, Robert Kretschmar, and Ravi V. Bellamkonda
6.1 Introduction 87
6.2 Fusing Robotics with the Human Body: Interfacing with the Peripheral Nervous System 87
6.2.1 The Anatomy of Peripheral Nerves 88
6.2.1.1 Glial Cells of the Peripheral Nervous System 88
6.2.1.2 Functional Afferent and Efferent Pathways 88
6.2.2 Interfacing with the Periphery for Recording and Stimulation 89
6.2.2.1 Noninvasive Electrodes 89
6.2.2.2 Extraneural Electrodes 90
6.2.2.3 Intrafascicular Electrodes 91
6.2.2.4 Regeneration-Based Electrodes 92
6.2.2.5 Research Designs and Challenges 92
6.3 Listening to the Brain: Interfacing with the Central Nervous System 93
6.3.1 Glial Cells of the Central Nervous System 93
6.3.1.1 Microglia – Sentinels of the Brain 93
8.1.2 Summary 137
8.2 Evaluating Basic Implanted User Interfaces 137
8.2.1 Devices 138
8.2.2 Experimenters 139
8.2.3 Procedure 139
8.2.4 Medical Procedure 139
8.2.5 Study Procedure and Results 140
8.2.5.1 Touch Input Device (Pressure Sensor, Tap Sensor, Button) 140
8.2.5.2 Hover Input Device (Capacitive and Brightness Sensor) 141
8.2.5.3 Output Device (Red LED, Vibration Motor) 142
8.2.5.4 Audio Device (Speaker and Microphone) 144
8.2.5.5 Powering Device (Powermat Wireless Charger) 145
8.2.5.6 Wireless Communication Device (Bluetooth Chip) 146
8.2.6 Discussion 147
8.2.7 Exploring Exposed Components 147
8.3 Qualitative Evaluation 148
8.3.1 Simulating Implants: Artificial Skin 148
8.3.2 Task and Procedure 149
8.3.3 Participants 150
8.3.4 Results 150
8.4 Medical Considerations 150
8.4.1 Location 150
8.4.2 Device Parameters 151
8.4.3 Risks 151
8.4.4 Implications and Future Studies 152
8.5 Discussion and Limitations 152
8.5.1 Study Limitations 152
8.6 Conclusions 153
References 153

9 Ultralow Power and Robust On-Chip Digital Signal Processing for Closed-Loop Neuro-Prosthesis 155
Swarup Bhunia, Abhishek Basak, Seetharam Narasimhan, and Maryam Sadat Hashemian
9.1 Introduction 155
9.1.1 Neural Interfaces 158
9.1.2 Closing the Neural Loop: Significance of On-Chip DSP 160
9.2 Algorithm: a Vocabulary-Based Neural Signal 162
9.2.1 Analysis 162
9.2.2 Spike-Level Vocabulary 163
9.2.3 Spike Detection 164
9.2.4 Spike Characterization and Sorting 166
9.2.5 Burst-Level Vocabulary 167
9.2.6 Multichannel Vocabulary for Behavior-Specific Patterns 167
9.2.7 Output Packet Generation 169
9.3 Hardware Implementation 171
9.3.1 Wavelet Module 173
9.3.1.1 Vocabulary Module 177
9.3.2 Area, Power Reduction Methodologies 179
9.3.2.1 Subthreshold versus Super-Threshold Operation 181
9.3.3 Impact of Process Variations on Yield 183
9.3.3.1 Preferential Design 185
9.3.4 Overall Design Flow 188
9.4 Summary 191
References 191

10 Implantable CMOS Imaging Devices 195
Jun Ohta
10.1 Introduction 195
10.2 Fundamentals of CMOS Imaging Devices 198
10.2.1 Photosensors 198
10.2.2 Active Pixel Sensor 199
10.2.3 Log Sensor 201
10.2.4 Pulse Width Modulation Sensor 202
10.2.5 SPAD Sensor 203
10.3 Artificial Retina 203
10.3.1 Principle of Artificial Retina 203
10.3.2 Artificial Retina Based on CMOS Imaging Device 204
10.4 Brain-Implantable CMOS Imaging Device 210
10.4.1 Measurement Methods for Brain Activities 210
10.4.2 Fiber Endoscope and Head-Mountable Device 211
10.4.3 Brain-Implantable CMOS Imaging Device 212
10.5 Summary and Future Directions 215
Acknowledgments 217
References 217

11 Implanted Wireless Biotelemetry 221
Mehmet Rasit Yuce and Jean-Michel Redoute
11.1 Introduction 221
11.2 Biotelemetry 223
11.2.1 Inductive Link for Forward Data 225
11.2.2 Wireless Power Link 226
11.2.3 Implantable Telemetry Links 228
11.2.3.1 Wideband Telemetry Link 228
11.2.3.2 Multichannel Neural Recording Systems 228
11.2.3.3 Wireless Endoscope 230
11.3 Microelectrode Arrays and Interface Electronics 232
11.3.1 Stimulation Front Ends 233
11.3.2 Recording Front-Ends 238
12 Nano-Enabled Implantable Device for In Vivo Glucose Monitoring
Esteve Juanola-Feliu, Jordi Colomer-Farrarons, Pere Miribel-Catalá,
Manel González-Piñero, and Josep Samitier

12.1 Introduction 247
12.1.1 Nanotechnology 247
12.1.2 Nanomedicine 248
12.2 Biomedical Devices for In Vivo Analysis 249
12.2.1 State of the Art 249
12.2.2 The Innovative Biomedical Device 250
12.2.3 Architecture of the Implantable Device 251
12.2.4 Implantable Front-End Architecture for In Vivo Detection Biosensor Applications 254
12.2.4.1 Architecture of the Envisaged Subcutaneous Device 254
12.2.4.2 Implementation and Results 258
12.2.5 The Diabetes Care Devices Market 260
12.3 Conclusions and Final Recommendations 261
References 262

13 Improving the Biocompatibility of Implantable Bioelectronics Devices
Gymama Slaughter

13.1 Introduction 265
13.2 Implantable Bioelectronic Device Materials 267
13.3 Surface Composition 269
13.4 Response to Implantation 273
13.5 Conclusion 278
References 279

14 Abiotic (Nonenzymatic) Implantable Biofuel Cells
Sven Kerzenmacher

14.1 Introduction 285
14.1.1 The History of Implantable Abiotic Fuel Cells 285
14.2 Basic Principles 286
14.2.1 Electrode Reactions and Theoretical Potentials 287
14.2.2 Practical Fuel Cell Voltage, Power Density, and Efficiency 289
14.2.3 Reliable Characterization of Implantable Glucose Fuel Cells 291
14.3 Abiotic Catalyst Materials and Separator Membranes 292
14.3.1 Electrocatalysts for Glucose Oxidation 292
14.3.2 Electrocatalysts for Oxygen Reduction 293
14.3.3 Separator Membranes 294
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4</td>
<td>Design Considerations</td>
<td>295</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Site of Implantation</td>
<td>295</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Strategies to Cope with the Presence of Mixed Reactants</td>
<td>297</td>
</tr>
<tr>
<td>14.5</td>
<td>State-of-the-Art and Practical Examples</td>
<td>299</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Comparison of Fuel Cell Designs and Their Power Densities</td>
<td>299</td>
</tr>
<tr>
<td>14.5.2</td>
<td>Factors Affecting Long-Term Operation</td>
<td>304</td>
</tr>
<tr>
<td>14.6</td>
<td>Conclusion and Outlook</td>
<td>307</td>
</tr>
<tr>
<td>14.6.1</td>
<td>State-of-the-Art</td>
<td>307</td>
</tr>
<tr>
<td>14.6.2</td>
<td>Applications</td>
<td>308</td>
</tr>
<tr>
<td>14.6.3</td>
<td>Challenges and Future Trends</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>309</td>
</tr>
<tr>
<td>15</td>
<td>Direct-Electron-Transfer-Based Enzymatic Fuel Cells In Vitro, Ex Vivo, In Vivo</td>
<td>315</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>315</td>
</tr>
<tr>
<td>15.2</td>
<td>Oxidoreductases for Direct-Electron-Transfer-Based Biodevices</td>
<td>316</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Anodic Bioelements</td>
<td>317</td>
</tr>
<tr>
<td>15.2.2</td>
<td>Cathodic Bioelements</td>
<td>321</td>
</tr>
<tr>
<td>15.3</td>
<td>Design of Enzyme-Based Biodevices</td>
<td>323</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Electrode Material</td>
<td>325</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Electrode Function</td>
<td>327</td>
</tr>
<tr>
<td>15.4</td>
<td>Examples of Direct Electron Transfer Enzymatic Fuel Cells</td>
<td>329</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Enzymatic Fuel Cells Operating In Vitro</td>
<td>329</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Biodevices Operating In Vivo</td>
<td>334</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Enzymatic Fuel Cells Operating Ex Vivo</td>
<td>336</td>
</tr>
<tr>
<td>15.4.4</td>
<td>Summary</td>
<td>339</td>
</tr>
<tr>
<td>15.5</td>
<td>Outlook</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>341</td>
</tr>
<tr>
<td>16</td>
<td>Enzymatic Fuel Cells: From Design to Implantation in Mammals</td>
<td>347</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>347</td>
</tr>
<tr>
<td>16.2</td>
<td>Design of Implantable Bioelectrodes of Glucose Biofuel Cells</td>
<td>352</td>
</tr>
<tr>
<td>16.3</td>
<td>Packaging of Implanted Biofuel Cells</td>
<td>356</td>
</tr>
<tr>
<td>16.4</td>
<td>Surgery</td>
<td>358</td>
</tr>
<tr>
<td>16.5</td>
<td>Implanted Biofuel Cell Performances</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>361</td>
</tr>
<tr>
<td>17</td>
<td>Implanted Biofuel Cells Operating In Vivo</td>
<td>363</td>
</tr>
<tr>
<td>17.1</td>
<td>Implanted Biofuel Cells</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>377</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>377</td>
</tr>
<tr>
<td>18</td>
<td>Biomedical Implantable Systems – History, Design, and Trends</td>
<td>381</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>Wen H. Ko and Philip X.-L. Feng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>381</td>
</tr>
<tr>
<td>18.2</td>
<td>History: Review of Implant Systems</td>
<td>383</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Historical Review of Early Implant Systems, 1950–1970</td>
<td>384</td>
</tr>
<tr>
<td>18.2.1.1</td>
<td>Historical Review of Early Implant Telemetry Systems, 1950–1970</td>
<td>384</td>
</tr>
<tr>
<td>18.2.1.3</td>
<td>Historical Review of Early Implant Control Systems, 1950–1970</td>
<td>391</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Historical Review of Implant Systems – 1970–1990</td>
<td>394</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Historical Review of Implant Systems – 1990–2012</td>
<td>395</td>
</tr>
<tr>
<td>18.3</td>
<td>Design of Implant Systems</td>
<td>396</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Basic Considerations and Characteristics of RF MEMS Implantable Systems</td>
<td>397</td>
</tr>
<tr>
<td>18.3.1.1</td>
<td>Legal Considerations of the Radio Frequency (RF), Field Strength, and Power Levels</td>
<td>397</td>
</tr>
<tr>
<td>18.3.1.2</td>
<td>Biocompatibility and Protection of the Biomedical Implant Systems</td>
<td>398</td>
</tr>
<tr>
<td>18.3.1.3</td>
<td>Characteristics of Biological and Medical Signals</td>
<td>399</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Design Considerations of Implantable Systems</td>
<td>400</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Micropower Electronic Design Approaches and Samples</td>
<td>401</td>
</tr>
<tr>
<td>18.3.4</td>
<td>Power Supply Design</td>
<td>403</td>
</tr>
<tr>
<td>18.3.5</td>
<td>System Integration and Micro-Packaging</td>
<td>404</td>
</tr>
<tr>
<td>18.4</td>
<td>Present Challenges</td>
<td>405</td>
</tr>
<tr>
<td>18.5</td>
<td>Future Trends</td>
<td>406</td>
</tr>
<tr>
<td>18</td>
<td>Acknowledgments</td>
<td>407</td>
</tr>
<tr>
<td>18</td>
<td>References</td>
<td>407</td>
</tr>
</tbody>
</table>

| 19 | Brain–Computer Interfaces: Ethical and Policy Considerations | 411 |
| Ellen M. McGee |
19.1	Introduction	411
19.2	Neuroethics	412
19.3	Brain–Computer Interfaces	412
19.4	Noninvasive Interfaces	413
19.5	Partially Invasive Interfaces	413
19.6	Invasive Interfaces	413
19.7	Development of Brain–Computer Interfaces	414
19.8	Therapy/Enhancement	418
19.9	Ethical Issues	419
19.10	Brain Chips and Cloning	420
19.11	Regulatory Procedures	424
19.12	Principles and Standards for Adoption	426
19	References	430